Home
Class 12
MATHS
If f(x)=(x-1)/(x+1),xne1, then f(f(x))=....

If `f(x)=(x-1)/(x+1),xne1`, then `f(f(x))`=__________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( f(f(x)) \) for the function \( f(x) = \frac{x-1}{x+1} \) where \( x \neq 1 \), we will follow these steps: ### Step 1: Substitute \( f(x) \) into itself We start by substituting \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{x-1}{x+1}\right) \] ### Step 2: Apply the function definition Now we need to apply the function \( f \) to \( \frac{x-1}{x+1} \): \[ f\left(\frac{x-1}{x+1}\right) = \frac{\left(\frac{x-1}{x+1}\right) - 1}{\left(\frac{x-1}{x+1}\right) + 1} \] ### Step 3: Simplify the numerator To simplify the numerator: \[ \frac{x-1}{x+1} - 1 = \frac{x-1}{x+1} - \frac{x+1}{x+1} = \frac{x-1 - (x+1)}{x+1} = \frac{x-1-x-1}{x+1} = \frac{-2}{x+1} \] ### Step 4: Simplify the denominator Now simplify the denominator: \[ \frac{x-1}{x+1} + 1 = \frac{x-1}{x+1} + \frac{x+1}{x+1} = \frac{x-1 + (x+1)}{x+1} = \frac{x-1+x+1}{x+1} = \frac{2x}{x+1} \] ### Step 5: Combine the results Now we can combine the results from the numerator and denominator: \[ f(f(x)) = \frac{\frac{-2}{x+1}}{\frac{2x}{x+1}} = \frac{-2}{2x} = \frac{-1}{x} \] ### Final Result Thus, we have: \[ f(f(x)) = \frac{-1}{x}, \quad \text{where } x \neq 0 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Answer the following questions)|22 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Select the correct option)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(3x-1)/(x+1),xne-1 , then find fof (x).

If f(x)=(x-1)/(x+1), then find f{f(x)}

Knowledge Check

  • If f(x) = (x+1)/( x-1) , then f ( f(x))=

    A
    `x`
    B
    `(x-1)/(x+1)`
    C
    `(x^2 +1)/(x^2-1)`
    D
    `1/x`
  • If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(2)))))

    A
    2
    B
    3
    C
    4
    D
    6
  • If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(f(2)))))

    A
    2
    B
    3
    C
    4
    D
    6
  • Similar Questions

    Explore conceptually related problems

    If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)

    If f(x)=(x)/(x-1),xne1 , then show that fof (x) = x.

    If f(x)=(3x-1)/(x+1),xne ____________, then fof (x) is____________

    f(x)=(1-x)/(1+x) then f{f((1)/(x))}

    If f(x)=(1-x)/(1+x) then f{f((1)/(x))}