Home
Class 11
PHYSICS
Evaluate the following : int(0)^(pi//2...

Evaluate the following :
`int_(0)^(pi//2)sin theta d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta \), we will follow these steps: ### Step 1: Set up the integral We begin by writing the integral we need to evaluate: \[ I = \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta \] ### Step 2: Find the antiderivative of \(\sin \theta\) The antiderivative (indefinite integral) of \(\sin \theta\) is: \[ -\cos \theta + C \] where \(C\) is the constant of integration. ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from \(0\) to \(\frac{\pi}{2}\): \[ I = \left[-\cos \theta\right]_{0}^{\frac{\pi}{2}} \] ### Step 4: Substitute the limits of integration Now we substitute the upper limit and lower limit into the antiderivative: \[ I = -\cos\left(\frac{\pi}{2}\right) - \left(-\cos(0)\right) \] ### Step 5: Calculate the cosine values We know that: \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \cos(0) = 1 \] Substituting these values gives: \[ I = -0 - (-1) = 1 \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sin \theta \, d\theta = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL TOOLS

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (9)|13 Videos
  • GRAVITATION

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi)sin theta d theta =

int_(0)^( pi/2)sin^(2)theta d theta=

Knowledge Check

  • int_(0) ^(pi//2) cos^(2) theta d theta =

    A
    0
    B
    2
    C
    `pi/4`
    D
    `pi/2`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^( pi/2)sin^(2)theta d theta=

    int_(0)^( pi/2)sin^(3)theta d theta=

    Evaluate the following : int_(-pi//2)^(pi//2) cos theta d theta

    Find: int_0^(pi/2)sin^3theta d theta

    int_(0)^( pi/2)cos^(9)theta d theta

    int_(0)^( pi/2)cos^(9)theta d theta

    int_(0)^( pi/2)cos^(3)theta d theta