Home
Class 12
MATHS
If the foci of the ellipse (x^(2))/(16)+...

If the foci of the ellipse `(x^(2))/(16)+(y^(2))/(b^(2))=1` and the hyperbola `(x^(2))/(144)-(y^(2))/(81)=(1)/(125)` coincide, the find the value of `b^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( b^2 \) such that the foci of the given ellipse and hyperbola coincide. ### Step 1: Identify the parameters of the ellipse The equation of the ellipse is given by: \[ \frac{x^2}{16} + \frac{y^2}{b^2} = 1 \] Here, \( a^2 = 16 \) and \( b^2 = b^2 \). ### Step 2: Calculate the distance of the foci of the ellipse The distance of the foci from the center for an ellipse is given by: \[ c_e = \sqrt{a^2 - b^2} \] Substituting \( a^2 = 16 \): \[ c_e = \sqrt{16 - b^2} \] ### Step 3: Identify the parameters of the hyperbola The equation of the hyperbola is given by: \[ \frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{125} \] To rewrite it in standard form, we multiply through by 125: \[ \frac{125x^2}{144} - \frac{125y^2}{81} = 1 \] This gives us: \[ \frac{x^2}{\frac{144}{125}} - \frac{y^2}{\frac{81}{125}} = 1 \] From this, we can identify \( a^2 = \frac{144}{125} \) and \( b^2 = \frac{81}{125} \). ### Step 4: Calculate the distance of the foci of the hyperbola The distance of the foci from the center for a hyperbola is given by: \[ c_h = \sqrt{a^2 + b^2} \] Substituting \( a^2 = \frac{144}{125} \) and \( b^2 = \frac{81}{125} \): \[ c_h = \sqrt{\frac{144}{125} + \frac{81}{125}} = \sqrt{\frac{144 + 81}{125}} = \sqrt{\frac{225}{125}} = \sqrt{\frac{9}{5}} = \frac{3}{\sqrt{5}} \] ### Step 5: Set the distances equal Since the foci of the ellipse and hyperbola coincide, we set \( c_e = c_h \): \[ \sqrt{16 - b^2} = \frac{3}{\sqrt{5}} \] ### Step 6: Square both sides to eliminate the square root Squaring both sides gives: \[ 16 - b^2 = \frac{9}{5} \] ### Step 7: Solve for \( b^2 \) Rearranging the equation: \[ b^2 = 16 - \frac{9}{5} \] To combine the terms, convert 16 to a fraction: \[ 16 = \frac{80}{5} \] Thus, \[ b^2 = \frac{80}{5} - \frac{9}{5} = \frac{71}{5} \] ### Final Answer The value of \( b^2 \) is: \[ \boxed{\frac{71}{5}} \]

To solve the problem, we need to find the value of \( b^2 \) such that the foci of the given ellipse and hyperbola coincide. ### Step 1: Identify the parameters of the ellipse The equation of the ellipse is given by: \[ \frac{x^2}{16} + \frac{y^2}{b^2} = 1 \] Here, \( a^2 = 16 \) and \( b^2 = b^2 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise Physics, SECTION-1 (PART-A)|5 Videos
  • TEST PAPERS

    BANSAL|Exercise Physics, SECTION-1 (PART-A) [COMPREHENSION TYPE]|2 Videos
  • TEST PAPERS

    BANSAL|Exercise Math|15 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide,then find the value of b^(2)

If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide write the value of b^(2).

Knowledge Check

  • If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide, then the value of b^(2) is

    A
    1
    B
    5
    C
    7
    D
    9
  • If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2)=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=1/25 coincide, then the value of b^(2) is

    A
    1
    B
    5
    C
    7
    D
    9
  • If the foci of the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola coincide then b^(2) equals

    A
    5
    B
    7
    C
    9
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

    If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide then the value of b^(2) is

    If the foci of the ellipse (x^(2))/(25)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144)-(y^(2))/(81)=(1)/(25) coincide,then length of semi-minor axis is

    Foci of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(alt b) are

    If the ellipse (x^(2))/16+(y^(2))/(b^(2))=1,bgt0 and the hyperbola (x^(2))/81-(y^(2))/63=1/16 intersect orthogonally, then the value of b^(2) is