Home
Class 7
MATHS
Factorise a^(3) - 3b^(2) + 3a^(2) - ab^(...

Factorise `a^(3) - 3b^(2) + 3a^(2) - ab^(2)`
The following steps are involved in solving the above problem . Arrange them in sequential order .
(A) `(a + 3) (a^(2) - b^(2))`
(B) Rearrange the terms as `a^(3) + 3a^(2) - 3b^(2) - ab^(2)`
(C) `a^(2) (a + 3) - b^(2) ( 3 + a)`
(D) `(a + 3) (a + b) ( a-b)`

A

BCDA

B

BCAD

C

BDCA

D

ABCD

Text Solution

Verified by Experts

The correct Answer is:
B

(B) , (C) , (A) and (D) is the required sequential order.
Hence , the correct option is (b) .
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : a^(3) - ab^(2) + a^(2)b - b^(3)

Factorise (2a + 3b)^(2) - (3a - 2b)^(2) .

Factorise 25x^(2) - 30xy + 9y^(2) . The following steps are involved in solving the above problem . Arrange them in sequential order . (A) (5x - 3y)^(2) " " [ because a^(2) - 2b + b^(2) = (a-b)^(2)] (B) (5x)^(2) - 30xy + (3y)^(2) = (5x)^(2) - 2(5x)(3y) + (3y)^(2) (C) (5x - 3y) (5x - 3y)

Factorise a^3x^3-3a^2bx^2+3ab^2x-b^3

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

(a ^ (2) -b ^ (2)) / (ab) - (a ^ (3) -b ^ (3)) / (a ^ (2) -b ^ (2))