Home
Class 12
MATHS
The length of the shortest distance betw...

The length of the shortest distance between the lines, ` vec r_1=3 hat i+6 hat j+lambda(-4 hat i+3 hat j+2 hat k)` and ` vec r_2=-2 hat i+7 hat k+mu(-4 hat i+ hat j+ hat k)` is 9 (b) 6 (c) 3 (d) None of these

Answer

Step by step text solution for The length of the shortest distance between the lines, vec r_1=3 hat i+6 hat j+lambda(-4 hat i+3 hat j+2 hat k) and vec r_2=-2 hat i+7 hat k+mu(-4 hat i+ hat j+ hat k) is 9 (b) 6 (c) 3 (d) None of these by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    RESONANCE DPP|Exercise All Questions|5 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Knowledge Check

  • The shortest distance between the line L_1=(hat i - hat j hat k) lambda (2 hat i - 14 hat j 5 hat k) and L_2=(hat j hat k) mu (-2 hat i - 4 hat 7 hat) then L_1 and L_2 is

    A
    `frac{5}{sqrt (221)}`
    B
    `frac{10}{sqrt (221)}`
    C
    `frac{2}{sqrt (221)}`
    D
    `frac{5}{11}`
  • Similar Questions

    Explore conceptually related problems

    Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

    Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

    vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

    Find the angle between the line vec r=hat i+2hat j-hat k+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

    Find the shortest distance between the lines whose vector equations are vec r=(hat i+2hat j+3hat k)+lambda(hat i-3hat j+2hat k) and vec r=4hat i+5hat j+6hat k+mu(2hat i+3hat j+hat k)

    Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

    Find the angle between the lines vec r*(hat i+2hat j-hat k)+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4