Home
Class 12
MATHS
(i) vec a and vec -a are collinear...

(i) `vec a` and `vec -a` are collinear

Text Solution

Verified by Experts

The correct Answer is:
(i)True


Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.2|19 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.3|18 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

Let vec a , vec b ,a n d vec c be non-zero vectors and vec V_1= vec axx( vec bxx vec c)a n d vec V_2( vec axx vec b)xx vec cdot Vectors vec V_1a n d vec V_2 are equal. Then vec aa n vec b are orthogonal b. vec aa n d vec c are collinear c. vec ba n d vec c are orthogonal d. vec b=lambda( vec axx vec c)w h e nlambda is a scalar

Knowledge Check

  • If vec a and vec b are collinear vectors, then which of the following are incorrect?

    A
    `vec b = lambda vec a`, for some scalar `lambda`
    B
    `vec a = pm vec b`
    C
    The respective components of `vec a` and `vec b` are proportional.
    D
    Both the vectors `vec a` and `vec b` have the same direction, but different magnitudes.
  • Similar Questions

    Explore conceptually related problems

    If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

    If vec aa n d vec b are two non-collinear vectors, show that points l_1 vec a+m_1 vec b ,l_2 vec a+m_2 vec b and l_3 vec a+m_3 vec b are collinear if |l_1l_2l_3m_1m_2m_3 1 1 1|=0.

    If vec x and vec y are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b) vec x + (15b-12c) vec y + (12c-20a) vec x xx vec y=0 is:

    If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec xxx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

    If vec xa n d vec y are two non-collinear vectors and A B C isa triangle with side lengths a ,b ,a n dc satisfying (20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vec xxx vec y)=0, then triangle A B C is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

    If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

    If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these