Home
Class 11
MATHS
Evaluate the following : lim(theta to ...

Evaluate the following :
`lim_(theta to 0)(1-costheta)/(1-cos3theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{\theta \to 0} \frac{1 - \cos \theta}{1 - \cos 3\theta}, \] we start by substituting \(\theta = 0\): 1. **Substitute \(\theta = 0\)**: \[ \frac{1 - \cos(0)}{1 - \cos(3 \cdot 0)} = \frac{1 - 1}{1 - 1} = \frac{0}{0}. \] This gives us an indeterminate form \( \frac{0}{0} \). **Hint**: When you encounter an indeterminate form, consider using L'Hôpital's Rule. 2. **Apply L'Hôpital's Rule**: Since we have \( \frac{0}{0} \), we can differentiate the numerator and the denominator with respect to \(\theta\). - Differentiate the numerator: \[ \frac{d}{d\theta}(1 - \cos \theta) = \sin \theta. \] - Differentiate the denominator: \[ \frac{d}{d\theta}(1 - \cos 3\theta) = 3\sin(3\theta). \] 3. **Rewrite the limit**: Now we can rewrite the limit using the derivatives: \[ \lim_{\theta \to 0} \frac{\sin \theta}{3 \sin(3\theta)}. \] **Hint**: Simplifying the limit can help you evaluate it more easily. 4. **Substitute \(\theta = 0\) again**: Substitute \(\theta = 0\): \[ \frac{\sin(0)}{3 \sin(3 \cdot 0)} = \frac{0}{3 \cdot 0} = \frac{0}{0}. \] We still have an indeterminate form. 5. **Apply L'Hôpital's Rule again**: Differentiate the numerator and denominator again: - Differentiate the numerator: \[ \frac{d}{d\theta}(\sin \theta) = \cos \theta. \] - Differentiate the denominator: \[ \frac{d}{d\theta}(3 \sin(3\theta)) = 9 \cos(3\theta). \] 6. **Rewrite the limit again**: Now we can rewrite the limit: \[ \lim_{\theta \to 0} \frac{\cos \theta}{9 \cos(3\theta)}. \] 7. **Substitute \(\theta = 0\) one last time**: Substitute \(\theta = 0\): \[ \frac{\cos(0)}{9 \cos(3 \cdot 0)} = \frac{1}{9 \cdot 1} = \frac{1}{9}. \] Thus, the final answer is \[ \boxed{\frac{1}{9}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(theta to 0)(1-costheta)/(2theta^(2))

Evaluate the following limits : lim_(theta to 0)((cosectheta-cottheta)/(theta))

Knowledge Check

  • lim_(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    A
    `4/9`
    B
    `1/2`
    C
    `-1/2`
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following : lim_(theta to 0)(sin4theta)/(tan3theta)

    Evaluate the following limit: (lim)_(theta rarr0)(1-cos4 theta)/(1-cos6 theta)

    Evaluate the following limits : lim_(theta to 0)(sin5theta-sin3theta)/(sintheta) .

    lim_(theta rarr0)(1-cos theta)/(sin^(2)2 theta)

    Evaluate the following limit: (lim)_(theta rarr0)(sin3 theta)/(tan2 theta)

    Evaluate the following limit: (lim)_(theta rarr0)(s in4 theta)/(tan3 theta)

    Evaluate sqrt((1-cos theta)/(1+costheta))