Home
Class 11
MATHS
For any positive integer lim( x -> a) (x...

For any positive integer `lim_( x -> a) (x^n-a^n)/(x-a) = na^(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
`"False"`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

For any positive integer lim_(x rarr a)(x^(h)-a^(n))/(x-a)=na^(n-1)

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

For all positive integers {x(x^(n-1)-n*a^(n-1)+a^(n)(n-1)} is divisible by

When n is any postive integer,the expansion (x+a)^(n) = .^(n)c_(0)x^(n) + .^(n)c_(1)x^(n-1)a + ……. + .^(n)c_(n)a^(n) is valid only when

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .