Home
Class 14
MATHS
Let a function is defined as f(x)=(a^(x)...

Let a function is defined as `f(x)=(a^(x)+a^(-x))/(2), a gt 0`, what is the value of `f(x+y)+f(x-y)`?

A

`f(x)+f(y)`

B

`f(x)f(y)`

C

`2f(x)f(y)`

D

`4f(x)f(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x+y) + f(x-y) \) given the function \( f(x) = \frac{a^x + a^{-x}}{2} \). ### Step 1: Calculate \( f(x+y) \) Using the definition of the function: \[ f(x+y) = \frac{a^{x+y} + a^{-(x+y)}}{2} \] ### Step 2: Calculate \( f(x-y) \) Similarly, we calculate: \[ f(x-y) = \frac{a^{x-y} + a^{-(x-y)}}{2} \] ### Step 3: Add \( f(x+y) \) and \( f(x-y) \) Now, we add the two results from Step 1 and Step 2: \[ f(x+y) + f(x-y) = \frac{a^{x+y} + a^{-(x+y)}}{2} + \frac{a^{x-y} + a^{-(x-y)}}{2} \] ### Step 4: Combine the fractions Combining the fractions gives: \[ f(x+y) + f(x-y) = \frac{a^{x+y} + a^{-(x+y)} + a^{x-y} + a^{-(x-y)}}{2} \] ### Step 5: Simplify the expression We can group the terms: \[ = \frac{(a^{x+y} + a^{x-y}) + (a^{-(x+y)} + a^{-(x-y)})}{2} \] ### Step 6: Factor out common terms Notice that: \[ a^{x+y} + a^{x-y} = a^x(a^y + a^{-y}) \quad \text{and} \quad a^{-(x+y)} + a^{-(x-y)} = a^{-x}(a^{-y} + a^y) \] Thus, we can write: \[ = \frac{a^x(a^y + a^{-y}) + a^{-x}(a^{-y} + a^y)}{2} \] ### Step 7: Recognize the structure Since \( a^y + a^{-y} = 2f(y) \): \[ = \frac{a^x \cdot 2f(y) + a^{-x} \cdot 2f(y)}{2} \] \[ = f(y)(a^x + a^{-x}) \] ### Step 8: Substitute back to find the final result Since \( a^x + a^{-x} = 2f(x) \): \[ = f(y) \cdot 2f(x) \] Thus, the final result is: \[ f(x+y) + f(x-y) = f(x)f(y) \] ### Final Answer: \[ f(x+y) + f(x-y) = f(x)f(y) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|84 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

" If the function "f:R rarr R" defined by "f(x)=(3^(x)+3^(-x))/(2)," then show that "f(x+y)+f(x-y)=2f(x)f(y)"

If the function f:R rarr R defined by f(x)=(3^(x)+3^(-x)) , then show that f(x+y) = f(x-y) = 2f(x)f(y) .

Knowledge Check

  • Let a function is defined as f(x)=(a^x-a^-x)/2, agt0 , what is the value of f(x+y)+f(x-y)?

    A
    f(x)+f(y)
    B
    f(x)f(y)
    C
    2f(x)f(y)
    D
    f(x)f(y)
  • Given the function f (x) =(a ^(x) + a ^(-x))/(2), a gt 2, then f (x+y) + f(x -y) =

    A
    `2f (x). F (y)`
    B
    `f (x). F(y)`
    C
    `(f(x))/(f (y))`
    D
    `1/2 f (x) f (y)`
  • Given the function f(x) = (a^x +a^(-x)) //2 , (a gt 2) then f(x +y) +f(x-y)

    A
    `2 f (x) . F(y)`
    B
    `f(x) .f(y)`
    C
    `f(x) //f(y)`
    D
    None
  • Similar Questions

    Explore conceptually related problems

    A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0):} , then f(x) is

    A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equals

    Let f(x) be a function defined as below : f(x)=sin(x^(2)-3x) ,x le 0 =6x+5x^(2), x gt 0 then at x=0 ,f(x)

    Let a function f be defined by f(x)= "x-|x|"/x for x ne 0 and f(0)=2. Then f is

    If a differentiable function f defined for x gt0 satisfies the relation f(x^(2))=x^(3),x gt 0 , then what is the value of f'(4)?