Home
Class 12
MATHS
Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -...

Let ` A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A ` is equal to

A

` [{:( (sqrt(3))/(2) , ( 1)/(2) ),(1,0):}]`

B

` [{:( 1,0),( (sqrt(3))/(2) ,1) :}]`

C

` [{:( 1,(sqrt3)/(2) ),(0,3):}]`

D

` [{:(1,3),( 0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to compute \( A^T C^3 A \) where \( C = ABA^T \). Let's break it down: ### Step 1: Define the Matrices Given: \[ A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Compute \( A^T \) The transpose of matrix \( A \) is obtained by swapping rows and columns: \[ A^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 3: Compute \( C = ABA^T \) Now we need to compute \( C \): 1. First, calculate \( AB \): \[ AB = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \] Calculating the entries: - First row: \( \left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} + \frac{1}{2}\right) \) - Second row: \( \left(-\frac{1}{2}, -\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \) Thus, \[ AB = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \] 2. Now compute \( C = AB A^T \): \[ C = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] Calculating the entries of \( C \): - First row, first column: \( \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \cdot \frac{1}{2} \) - First row, second column: \( \frac{\sqrt{3}}{2} \cdot -\frac{1}{2} + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \cdot \frac{\sqrt{3}}{2} \) - Second row, first column: \( -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \cdot \frac{1}{2} \) - Second row, second column: \( -\frac{1}{2} \cdot -\frac{1}{2} + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \cdot \frac{\sqrt{3}}{2} \) ### Step 4: Compute \( C^3 \) To compute \( C^3 \), we first need \( C^2 \) and then multiply by \( C \) again. ### Step 5: Compute \( A^T C^3 A \) Finally, we compute \( A^T C^3 A \). ### Final Result After performing all calculations, we find that: \[ A^T C^3 A = B^3 \] Where \( B^3 \) is computed by multiplying \( B \) with itself three times.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-II)|17 Videos
  • MATRICES

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T) and X=P^(T)Q^(2005)P, then X equal to:

If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T) , the ltbr. P^(T)(Q^(2005)) P equal to

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then det (x) is equal to

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to

Let A=[[cos theta,-sin theta],[sin theta,cos theta]] Find the value of A^(-50) at theta=(pi)/2 (A) [[-(sqrt(3))/(2),-(1)/(2)],[-(1)/(2),(sqrt(3))/(2)]] (B) [[(sqrt(3))/(2),(1)/(2)],[(-1)/(2),(sqrt(3))/(2)]] (C) [[-(sqrt(3))/(2),(1)/(2)],[(1)/(2),(sqrt(3))/(2)]] (D) [[(1)/(2),(sqrt(3))/(2)],[(sqrt(3))/(2),(-1)/(2)]]

FIITJEE-MATRICES -ASSIGNMENT PROBLEM (OBJECTIVE) (Level-I)
  1. Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],...

    Text Solution

    |

  2. If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}...

    Text Solution

    |

  3. A be a square matrix of order 2 with |A| ne 0 such that |A+|A| adj (A)...

    Text Solution

    |

  4. Consider three matrices A=[2 1 4 1],B=[3 4 2 3]a n dC=[3-4-2 3] . Then...

    Text Solution

    |

  5. Let A and B be square matrices of same order satisfying AB =A and BA =...

    Text Solution

    |

  6. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  7. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  8. Let the matrices A=[{:( sqrt3,-2),(0,1):}] and P be any orthogonal mat...

    Text Solution

    |

  9. A, B, C are three non-zero matrices such that ABC = O, which of the fo...

    Text Solution

    |

  10. If A = [{:( 0,0,0),( 1,0,0),(0,1,0):}] ,then

    Text Solution

    |

  11. If A = [{:( 0,0,0),(0,0,0) ,(0,1,0):}] ,then A is

    Text Solution

    |

  12. If A and B are symmetric matrices of the same order then (A) A-B is sk...

    Text Solution

    |

  13. If A any square matrix then

    Text Solution

    |

  14. If A is a square matrix such that A^(3) =I then the value of A^(-1) ...

    Text Solution

    |

  15. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  16. If P and Q are symmetric matrices and PQ=QP then which of the followin...

    Text Solution

    |

  17. If A is skew symmetric matrix, then I - A is (where I is identity matr...

    Text Solution

    |

  18. If A=[(4,2),(-1,1)] then (A-21) (A-3I)=

    Text Solution

    |

  19. If A =[{:( a,x,y),( x,b,z),( y,z,c) :}] : a,b,c,x,y,z, "in" (1,2,3,4...

    Text Solution

    |

  20. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |