Home
Class 12
MATHS
Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -...

Let ` A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A ` is equal to

A

` [{:( (sqrt(3))/(2) , ( 1)/(2) ),(1,0):}]`

B

` [{:( 1,0),( (sqrt(3))/(2) ,1) :}]`

C

` [{:( 1,(sqrt3)/(2) ),(0,3):}]`

D

` [{:(1,3),( 0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to compute \( A^T C^3 A \) where \( C = ABA^T \). Let's break it down: ### Step 1: Define the Matrices Given: \[ A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Compute \( A^T \) The transpose of matrix \( A \) is obtained by swapping rows and columns: \[ A^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 3: Compute \( C = ABA^T \) Now we need to compute \( C \): 1. First, calculate \( AB \): \[ AB = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \] Calculating the entries: - First row: \( \left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} + \frac{1}{2}\right) \) - Second row: \( \left(-\frac{1}{2}, -\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \) Thus, \[ AB = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \] 2. Now compute \( C = AB A^T \): \[ C = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} + \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] Calculating the entries of \( C \): - First row, first column: \( \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \cdot \frac{1}{2} \) - First row, second column: \( \frac{\sqrt{3}}{2} \cdot -\frac{1}{2} + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \cdot \frac{\sqrt{3}}{2} \) - Second row, first column: \( -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \cdot \frac{1}{2} \) - Second row, second column: \( -\frac{1}{2} \cdot -\frac{1}{2} + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \cdot \frac{\sqrt{3}}{2} \) ### Step 4: Compute \( C^3 \) To compute \( C^3 \), we first need \( C^2 \) and then multiply by \( C \) again. ### Step 5: Compute \( A^T C^3 A \) Finally, we compute \( A^T C^3 A \). ### Final Result After performing all calculations, we find that: \[ A^T C^3 A = B^3 \] Where \( B^3 \) is computed by multiplying \( B \) with itself three times.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-II)|17 Videos
  • MATRICES

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T) and X=P^(T)Q^(2005)P, then X equal to:

If z(t)=sqrt(t^(3)+1) , then z'(2) is equal to

Knowledge Check

  • If P = [{:((sqrt3)/2,1/2),((-1)/2,(sqrt3)/2):}],A=[{:(1,1),(0,1):}] and Q = PAP^T then P^TQ^(2005) P is equal to

    A
    `[{:(1,2005),(0,1):}]`
    B
    `[{:((sqrt3)/2,2005),(1,0):}]`
    C
    `[{:(1,2005),((sqrt3)/2,1):}]`
    D
    `[{:(1,(sqrt3)/2),(0,2005):}]`
  • If P=[((sqrt(3))/2,1/2),(-1/2,(sqrt(3))/2)],A=[(1,1),(0,1)] and Q=PAP^(T) ,then X=P^(T)(Q^(2005))P is equal to

    A
    `[(1,2005),(0,10)]`
    B
    `[(sqrt(3)//2,2005),(1,0)]`
    C
    `[(1,2005),(sqrt(3)//2,1)]`
    D
    `[(1,sqrt(3)//2),(0,2005)]`
  • If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T) , the ltbr. P^(T)(Q^(2005)) P equal to

    A
    `[[1,2005],[0,1]]`
    B
    `[[sqrt(3)//1,2005],[1,0]]`
    C
    `[[1, 2005],[sqrt(3)//2,1]]`
    D
    `[[1, sqrt(3)//2 ],[0, 2005]]`
  • Similar Questions

    Explore conceptually related problems

    Let A=[[cos theta,-sin theta],[sin theta,cos theta]] Find the value of A^(-50) at theta=(pi)/2 (A) [[-(sqrt(3))/(2),-(1)/(2)],[-(1)/(2),(sqrt(3))/(2)]] (B) [[(sqrt(3))/(2),(1)/(2)],[(-1)/(2),(sqrt(3))/(2)]] (C) [[-(sqrt(3))/(2),(1)/(2)],[(1)/(2),(sqrt(3))/(2)]] (D) [[(1)/(2),(sqrt(3))/(2)],[(sqrt(3))/(2),(-1)/(2)]]

    If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

    If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then det (x) is equal to

    If P = P= [[sqrt3//2,1//2],[-1//2,sqrt3//2]] , A= [[1,1],[0,1]] and Q = PAP^T , then P^TQ^2005P is equal to

    If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to