Home
Class 11
MATHS
The Maximum value of 3 cos x+4 "sin"x+8 ...

The Maximum value of `3 cos x+4 "sin"x+8` is:

A

5

B

10

C

7

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( f(x) = 3 \cos x + 4 \sin x + 8 \), we can follow these steps: ### Step 1: Rewrite the trigonometric expression We can express \( 3 \cos x + 4 \sin x \) in the form \( R \sin(x + \alpha) \) or \( R \cos(x + \beta) \). To do this, we first calculate \( R \): \[ R = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 2: Determine the angles Next, we need to find \( \sin \alpha \) and \( \cos \alpha \) such that: \[ \cos \alpha = \frac{3}{5}, \quad \sin \alpha = \frac{4}{5} \] This means we can rewrite the expression as: \[ 3 \cos x + 4 \sin x = 5 \left( \frac{3}{5} \cos x + \frac{4}{5} \sin x \right) = 5 \sin(x + \alpha) \] where \( \alpha \) is such that \( \tan \alpha = \frac{4}{3} \). ### Step 3: Substitute back into the function Now we can rewrite \( f(x) \): \[ f(x) = 5 \sin(x + \alpha) + 8 \] ### Step 4: Find the maximum value The sine function \( \sin(x + \alpha) \) has a maximum value of 1. Therefore: \[ \text{Maximum of } f(x) = 5 \cdot 1 + 8 = 5 + 8 = 13 \] ### Conclusion Thus, the maximum value of the expression \( 3 \cos x + 4 \sin x + 8 \) is: \[ \boxed{13} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 3cos x+4sin x+3 is

The maximum value of 3cos x+4sin x+5 is

Knowledge Check

  • The minimum value of 3 cos x + 4 sin x +8 is

    A
    5
    B
    9
    C
    7
    D
    3
  • The minimum value of 3 cos x+4 sin x+8 is:

    A
    5
    B
    9
    C
    7
    D
    3
  • Maximum value of sin x+cos x is:

    A
    1
    B
    2
    C
    `sqrt2`
    D
    `(1)/(sqrt2)`
  • Similar Questions

    Explore conceptually related problems

    If 3cos x+4cos y=5, then the maximum value of 3sin x+4sin y is

    The maximum value of 8sin x+6cos x=

    Find the minimum and maximum values of 3cos x+4sin x

    Maximum value of sin(cos x) is-

    The maximum value of sin x. cos x is :