Home
Class 11
MATHS
Evaluate (i) ""^(10)C(4)+""^(10)C(...

Evaluate
(i) `""^(10)C_(4)+""^(10)C_(5)`
(ii) `""^(13)C_(6)+ ""^(13)C_(5)`
(iii) `""^(19)C_(17)+ ""^(19)C_(18)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the given expressions, we will use the identity: \[ nC_r + nC_{r+1} = (n+1)C_{r+1} \] ### (i) Evaluate \(10C_4 + 10C_5\) 1. **Identify \(n\) and \(r\)**: - Here, \(n = 10\) and \(r = 4\). 2. **Apply the identity**: \[ 10C_4 + 10C_5 = 11C_5 \] 3. **Calculate \(11C_5\)**: \[ 11C_5 = \frac{11!}{5!(11-5)!} = \frac{11!}{5! \cdot 6!} \] 4. **Simplify**: \[ = \frac{11 \times 10 \times 9 \times 8 \times 7 \times 6!}{5! \times 6!} \] The \(6!\) cancels out: \[ = \frac{11 \times 10 \times 9 \times 8 \times 7}{5!} \] Where \(5! = 120\). 5. **Calculate**: \[ = \frac{11 \times 10 \times 9 \times 8 \times 7}{120} \] - Calculate \(11 \times 10 = 110\) - \(110 \times 9 = 990\) - \(990 \times 8 = 7920\) - \(7920 \times 7 = 55440\) 6. **Final Division**: \[ \frac{55440}{120} = 462 \] ### Answer for (i): \[ 10C_4 + 10C_5 = 462 \] --- ### (ii) Evaluate \(13C_6 + 13C_5\) 1. **Identify \(n\) and \(r\)**: - Here, \(n = 13\) and \(r = 5\). 2. **Apply the identity**: \[ 13C_6 + 13C_5 = 14C_6 \] 3. **Calculate \(14C_6\)**: \[ 14C_6 = \frac{14!}{6!(14-6)!} = \frac{14!}{6! \cdot 8!} \] 4. **Simplify**: \[ = \frac{14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8!}{6! \times 8!} \] The \(8!\) cancels out: \[ = \frac{14 \times 13 \times 12 \times 11 \times 10 \times 9}{6!} \] Where \(6! = 720\). 5. **Calculate**: \[ = \frac{14 \times 13 \times 12 \times 11 \times 10 \times 9}{720} \] - Calculate \(14 \times 13 = 182\) - \(182 \times 12 = 2184\) - \(2184 \times 11 = 24024\) - \(24024 \times 10 = 240240\) - \(240240 \times 9 = 2162160\) 6. **Final Division**: \[ \frac{2162160}{720} = 3003 \] ### Answer for (ii): \[ 13C_6 + 13C_5 = 3003 \] --- ### (iii) Evaluate \(19C_{17} + 19C_{18}\) 1. **Identify \(n\) and \(r\)**: - Here, \(n = 19\) and \(r = 17\). 2. **Apply the identity**: \[ 19C_{17} + 19C_{18} = 20C_{18} \] 3. **Calculate \(20C_{18}\)**: \[ 20C_{18} = \frac{20!}{18!(20-18)!} = \frac{20!}{18! \cdot 2!} \] 4. **Simplify**: \[ = \frac{20 \times 19 \times 18!}{18! \cdot 2!} \] The \(18!\) cancels out: \[ = \frac{20 \times 19}{2!} = \frac{20 \times 19}{2} = \frac{380}{2} = 190 \] ### Answer for (iii): \[ 19C_{17} + 19C_{18} = 190 \] --- ### Summary of Answers: 1. \(10C_4 + 10C_5 = 462\) 2. \(13C_6 + 13C_5 = 3003\) 3. \(19C_{17} + 19C_{18} = 190\) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Short Answer Type Questions|14 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (i) Long Answer Type Questions - I|8 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (e ) Short Answer Type Questions|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : (i) ""^(8)P_(5) (ii) ""^(10)P_(3) (iii) ""^(12)C_(7) (iv) ""^(9)C_(0) .

Evaluate: (i) ^(10)C_3 (ii) ^(100)C_(98) (iii) ^(60)C_(60)

Knowledge Check

  • The value of ""^(13)C_(2) +""^(13)C_(3) +""^(13)C_(4) +…+""^(13)C_(13) is

    A
    `2^(13)-13`
    B
    `2^(13)-14`
    C
    an odd number `ne 2^(13)-12`
    D
    an even number `ne 2^(13)-14`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: (i) .^(10)C_(3) " " (ii) .^(11)C_(8) (iii) .^(50)C_(48) " " (iv) .^(63)C_(63)

    Evaluate: (i) ""^(20)C_(4) " " (ii) ""^(16)C_(13) " " (iii) .(90C_(88) (iv) ""^(71)C_(71) " " (v) ""^(n+1)C_(n) " " (vi) Sigma_(r=1)^(6) ""^(6)C_(r)

    If ""^(n)C_(10)= ""^(n)C_(9) , find ""^(n)C_(19) .

    Evaluate the following: (i) .^(10)C_(5) (ii) .^(12)C_(8) (iii) .^(15)C_(12) (iv) .^(n+1)C_(n) (v) .^(14)C_(9)

    Evaluate : ""^(13)C_(10)

    (i) If .^(20)C_(r)=.^(20)C_(r+6) , find r. (ii) If .^(18)C_(r)=.^(18)C_(r+2) , find .^(r)C_(5) .

    Evaluate the following : (i) ""^(7)C_(5) (ii) ""^(105)C_(102)