Home
Class 12
MATHS
Consider the matrices : A=Consider the...

Consider the matrices :
A=Consider the matrices :
`A=[(1,-2),(-1,3)]` and `B=[(a,b),(c,d)]`
If `AB=[(2,9),(5,6)]`, find the values of a,b,c and d.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a, b, c, \) and \( d \) in the matrix \( B \) given that the product \( AB \) equals a specific matrix. Given: \[ A = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad AB = \begin{pmatrix} 2 & 9 \\ 5 & 6 \end{pmatrix} \] ### Step 1: Calculate the product \( AB \) To find \( AB \), we multiply the matrices \( A \) and \( B \): \[ AB = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Using matrix multiplication, we compute each element: - First row, first column: \( 1 \cdot a + (-2) \cdot c = a - 2c \) - First row, second column: \( 1 \cdot b + (-2) \cdot d = b - 2d \) - Second row, first column: \( -1 \cdot a + 3 \cdot c = -a + 3c \) - Second row, second column: \( -1 \cdot b + 3 \cdot d = -b + 3d \) Thus, we have: \[ AB = \begin{pmatrix} a - 2c & b - 2d \\ -a + 3c & -b + 3d \end{pmatrix} \] ### Step 2: Set up equations based on equality of matrices Since \( AB \) is given to be equal to \( \begin{pmatrix} 2 & 9 \\ 5 & 6 \end{pmatrix} \), we can set up the following equations by comparing corresponding elements: 1. \( a - 2c = 2 \) (Equation 1) 2. \( b - 2d = 9 \) (Equation 2) 3. \( -a + 3c = 5 \) (Equation 3) 4. \( -b + 3d = 6 \) (Equation 4) ### Step 3: Solve the equations From Equation 1: \[ a = 2 + 2c \quad \text{(1)} \] Substituting (1) into Equation 3: \[ -(2 + 2c) + 3c = 5 \] \[ -2 - 2c + 3c = 5 \] \[ c = 7 \] Now substitute \( c = 7 \) back into (1): \[ a = 2 + 2(7) = 2 + 14 = 16 \] Next, from Equation 2: \[ b = 9 + 2d \quad \text{(2)} \] Substituting (2) into Equation 4: \[ -(9 + 2d) + 3d = 6 \] \[ -9 - 2d + 3d = 6 \] \[ d = 15 \] Now substitute \( d = 15 \) back into (2): \[ b = 9 + 2(15) = 9 + 30 = 39 \] ### Final Values Thus, the values are: \[ a = 16, \quad b = 39, \quad c = 7, \quad d = 15 \] ### Summary The final values are: - \( a = 16 \) - \( b = 39 \) - \( c = 7 \) - \( d = 15 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If [(a-b,2a+c),(2a-b,3c+d)]=[(-1, 5),( 0, 13)] , find the value of bdot

Consider three matrices A=[[2,14,1]],B=[3,42,3]] and C=[[3,-4-2,3]] Then find the value of the given equation

Knowledge Check

  • If A and B are 2-rowed square matrics such that (A+B)=[(4,-3),(1,6)] and (A-B)=[(-2,-1),(5,2)] then AB=?

    A
    `[(-7,5),(1,-5)]`
    B
    `[(7,-5),(1,5)]`
    C
    `[(7,-1),(5,-5)]`
    D
    `[(7,-1),(-5,5)]`
  • Similar Questions

    Explore conceptually related problems

    If A and B are two matrices such that A + B = [{:(3, 8),(11, 6):}] " and " A-B = [{:(5, 2),(-3, -6):}] , then find the matrices A and B.

    Find the value of a,b,c and d from equation : [(a-b,2a+c),(2a-b,3c+d)] = [(-1,5),(0,13)]

    if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

    Find the inverse of each of the matrices given below : If A=[(3,2),(7,5)] and B=[(6,7),(8,9)], " verify that " (AB)^(-1)= B^(-1) A^(-1) .

    Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4),(-2,3)]. Then ghe value of the sum tr(A)+tr((ABC))/2 +tr((ABC)^2)/4+tr((ABC)^3)/2+.......+oo is (A) 6 (B) 9 (C) 12 (D) none of these

    Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3,2),(7,5):}] and B=[{:(6,7),(8,9):}]

    Find the inverse of each of the matrices given below : If A=[(9,-1),(6,-2)] and B=[(-4,3),(5,-4)], " verify that "(AB)^(-1) = B^(-1) A^(-1) .