Home
Class 12
MATHS
Consider the matrices : A=Consider the...

Consider the matrices :
A=Consider the matrices :
`A=[(1,-2),(-1,3)]` and `B=[(a,b),(c,d)]`
If `AB=[(2,9),(5,6)]`, find the values of a,b,c and d.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a, b, c, \) and \( d \) in the matrix \( B \) given that the product \( AB \) equals a specific matrix. Given: \[ A = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad AB = \begin{pmatrix} 2 & 9 \\ 5 & 6 \end{pmatrix} \] ### Step 1: Calculate the product \( AB \) To find \( AB \), we multiply the matrices \( A \) and \( B \): \[ AB = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Using matrix multiplication, we compute each element: - First row, first column: \( 1 \cdot a + (-2) \cdot c = a - 2c \) - First row, second column: \( 1 \cdot b + (-2) \cdot d = b - 2d \) - Second row, first column: \( -1 \cdot a + 3 \cdot c = -a + 3c \) - Second row, second column: \( -1 \cdot b + 3 \cdot d = -b + 3d \) Thus, we have: \[ AB = \begin{pmatrix} a - 2c & b - 2d \\ -a + 3c & -b + 3d \end{pmatrix} \] ### Step 2: Set up equations based on equality of matrices Since \( AB \) is given to be equal to \( \begin{pmatrix} 2 & 9 \\ 5 & 6 \end{pmatrix} \), we can set up the following equations by comparing corresponding elements: 1. \( a - 2c = 2 \) (Equation 1) 2. \( b - 2d = 9 \) (Equation 2) 3. \( -a + 3c = 5 \) (Equation 3) 4. \( -b + 3d = 6 \) (Equation 4) ### Step 3: Solve the equations From Equation 1: \[ a = 2 + 2c \quad \text{(1)} \] Substituting (1) into Equation 3: \[ -(2 + 2c) + 3c = 5 \] \[ -2 - 2c + 3c = 5 \] \[ c = 7 \] Now substitute \( c = 7 \) back into (1): \[ a = 2 + 2(7) = 2 + 14 = 16 \] Next, from Equation 2: \[ b = 9 + 2d \quad \text{(2)} \] Substituting (2) into Equation 4: \[ -(9 + 2d) + 3d = 6 \] \[ -9 - 2d + 3d = 6 \] \[ d = 15 \] Now substitute \( d = 15 \) back into (2): \[ b = 9 + 2(15) = 9 + 30 = 39 \] ### Final Values Thus, the values are: \[ a = 16, \quad b = 39, \quad c = 7, \quad d = 15 \] ### Summary The final values are: - \( a = 16 \) - \( b = 39 \) - \( c = 7 \) - \( d = 15 \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If [(a-b,2a+c),(2a-b,3c+d)]=[(-1, 5),( 0, 13)] , find the value of bdot

Consider three matrices A=[[2,14,1]],B=[3,42,3]] and C=[[3,-4-2,3]] Then find the value of the given equation

If A and B are 2-rowed square matrics such that (A+B)=[(4,-3),(1,6)] and (A-B)=[(-2,-1),(5,2)] then AB=?

If A and B are two matrices such that A + B = [{:(3, 8),(11, 6):}] " and " A-B = [{:(5, 2),(-3, -6):}] , then find the matrices A and B.

Find the value of a,b,c and d from equation : [(a-b,2a+c),(2a-b,3c+d)] = [(-1,5),(0,13)]

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

Find the inverse of each of the matrices given below : If A=[(3,2),(7,5)] and B=[(6,7),(8,9)], " verify that " (AB)^(-1)= B^(-1) A^(-1) .

Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4),(-2,3)]. Then ghe value of the sum tr(A)+tr((ABC))/2 +tr((ABC)^2)/4+tr((ABC)^3)/2+.......+oo is (A) 6 (B) 9 (C) 12 (D) none of these

Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3,2),(7,5):}] and B=[{:(6,7),(8,9):}]

Find the inverse of each of the matrices given below : If A=[(9,-1),(6,-2)] and B=[(-4,3),(5,-4)], " verify that "(AB)^(-1) = B^(-1) A^(-1) .

MODERN PUBLICATION-MATRICES-Exercise 3 (d) Long Answer Type Questions I
  1. Consider the matrices : A=Consider the matrices : A=[(1,-2),(-1,3)...

    Text Solution

    |

  2. Which relation is true for A =[(2,-1),(-1,2)] and B=[(1,4),(-1,1)] (1)...

    Text Solution

    |

  3. If A=[(2,1),(1,0)],B=[(1,-1),(2,3)], verify that : (A+B)^(2)!=A^(2)+...

    Text Solution

    |

  4. If A=[(1,1,-1),(2,0,3),(3,-1,2)], B=[(1,3),(0,2),(-1,4)] and C=[(1,2,3...

    Text Solution

    |

  5. Let A=[(1,2),(2,1)],B=[(2,0),(1,3)] and C=[(1,1),(2,3)]. Calculate A...

    Text Solution

    |

  6. Let A=[(0,6,7),(-6,0,8),(7,-8,0)],B=[(0,1,1),(1,0,2),(1,2,0)],C=[(2),(...

    Text Solution

    |

  7. Find the matrix X so that X[1 2 3 4 5 6]=[-7-8-9""""""2""""""4""""6]

    Text Solution

    |

  8. If A=[(1,-2),(-3,4)], then find A^(2)+5A.

    Text Solution

    |

  9. If A=[3 1-1 2] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  10. Let A ={:[(2,0,1),(2,1,3),(1,-1,0)] and f(x) = x^(2) -5x + 6 , find f(...

    Text Solution

    |

  11. यदि A= [[2,0,1],[2,1,3],[1,-1,0]], तब A^(2) - 3A + 2I का मान ज्ञात क...

    Text Solution

    |

  12. if A=[{:(3,1),(-1,2):}],show that A^(2)-5A+7I=0.

    Text Solution

    |

  13. If M=[(7,5),(2,3)], then verify the equation : M^(2)-10M+11I(2)=O

    Text Solution

    |

  14. If A+l={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40l=0

    Text Solution

    |

  15. If A=[1 0 2 0 2 1 2 0 3] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  16. If A=[{:(-1,2),(3,1):}], find f(A), where f(x)=x^(2)-2x+3.

    Text Solution

    |

  17. If A=[(3,1),(-1,2)], then find f (A), where f(x)=x^(2)-5x+7.

    Text Solution

    |

  18. If A=[1 0-1 7] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  19. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  20. If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)], then find 'k' so that k^(2)=5...

    Text Solution

    |