Home
Class 12
MATHS
If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),...

If `P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)]`, find PQ.

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of matrices \( P \) and \( Q \), we will follow the matrix multiplication rules. Given: \[ P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 2 & 3 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 4 & 1 \end{pmatrix} \] ### Step 1: Verify the dimensions The matrix \( P \) is of order \( 3 \times 3 \) and the matrix \( Q \) is of order \( 3 \times 2 \). The number of columns in \( P \) (which is 3) matches the number of rows in \( Q \) (which is also 3). Thus, the multiplication \( PQ \) is possible, and the resulting matrix will be of order \( 3 \times 2 \). **Hint:** Always check the dimensions of the matrices before multiplying to ensure that the multiplication is valid. ### Step 2: Calculate the elements of the resulting matrix \( PQ \) The resulting matrix \( R = PQ \) will be calculated as follows: 1. **Element \( R_{11} \)**: \[ R_{11} = (0 \times 1) + (1 \times 3) + (0 \times 4) = 0 + 3 + 0 = 3 \] 2. **Element \( R_{12} \)**: \[ R_{12} = (0 \times 2) + (1 \times 0) + (0 \times 1) = 0 + 0 + 0 = 0 \] 3. **Element \( R_{21} \)**: \[ R_{21} = (0 \times 1) + (2 \times 3) + (1 \times 4) = 0 + 6 + 4 = 10 \] 4. **Element \( R_{22} \)**: \[ R_{22} = (0 \times 2) + (2 \times 0) + (1 \times 1) = 0 + 0 + 1 = 1 \] 5. **Element \( R_{31} \)**: \[ R_{31} = (2 \times 1) + (3 \times 3) + (0 \times 4) = 2 + 9 + 0 = 11 \] 6. **Element \( R_{32} \)**: \[ R_{32} = (2 \times 2) + (3 \times 0) + (0 \times 1) = 4 + 0 + 0 = 4 \] ### Step 3: Assemble the resulting matrix Now we can write the resulting matrix \( R \): \[ R = PQ = \begin{pmatrix} 3 & 0 \\ 10 & 1 \\ 11 & 4 \end{pmatrix} \] ### Final Answer Thus, the product \( PQ \) is: \[ \begin{pmatrix} 3 & 0 \\ 10 & 1 \\ 11 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions I|28 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Given A=[(1,1,1),(2,4,1),(2,3,1)], B=[(2,3),(3,4)]. Find P such that BPA= [(1,0,1),(0,1,0)]

let P_(1)=[(1,0,0),(0,1,0),(0,0,1)],P_(2)=[(1,0,0),(0,0,1),(0,1,0)],P_(3)=[(0,1,0),(1,0,0),(0,0,1)],P_(4)=[(0,1,0),(0,0,1),(1,0,0)],P_(5)=[(0,0,1),(1,0,0),(0,1,0)],P_(6)=[(0,0,1),(0,1,0),(1,0,0)] and X=sum_(k=1)^(6) P_(k)[(2,1,3),(1,0,2),(3,2,1)]P_(k)^(T) Where P_(k)^(T) is transpose of matrix P_(k) . Then which of the following options is/are correct?

Show that (i) [(5,-1),(6,7)][(2,1),(3,4)]!=[(2,1),(3,4)][(5,-1),(6,7)] (ii) [(1,2,3),(0,1,0),(1,1,1)][(-1,1,0),(0,-1,1),(2,3,4)]!=[(-1,1,0),(0,-1,1),(2,3,4)][(1,2,3),(0,1,0),(1,1,0)] .

If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)] then (PQ)^(-1) equals to

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

show that (i) [{:(5,-1),(6,7):}][{:(2,3),(3,4):}]ne[{:(2,3),(3,4):}][{:(5,-1),(6,7):}] (ii) [{:(1,2,3),(0,1,0),(1,1,0):}][{:(-1,1,0),(0,-1,1),(2,3,4):}] ne[{:(-1,1,0),(0,-1,1),(2,3,4):}][{:(1,2,3),(0,1,0),(1,1,0):}]

If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,-1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]

MODERN PUBLICATION-MATRICES-Exercise 3 (d ) Short Answer Type Questions
  1. If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)], find PQ.

    Text Solution

    |

  2. If I is the identity matrix and A is a square matrix such that A...

    Text Solution

    |

  3. If A=[1 0-1 7] and I=[1 0 0 1] , then find k so that A^2=8A+k I

    Text Solution

    |

  4. if A=[{:(costheta,sin theta ),(-sin theta,costheta):}], then show that...

    Text Solution

    |

  5. If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)], then Find AB

    Text Solution

    |

  6. If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)], find AB and BA and...

    Text Solution

    |

  7. यदि A = [{:(5,-1),(6,7)]"ओर " B = [ {:(2,1),(3,4):}] तो सिद्ध कर...

    Text Solution

    |

  8. Evaluate the following : (i) [(4),(5)][7" "9]+[(4,0),(0,-5)] (ii)...

    Text Solution

    |

  9. If [ (2x, 3)] [(1,2),(-3,0)][(x),(8)]=0, find 'x'

    Text Solution

    |

  10. for what values of x: [1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(...

    Text Solution

    |

  11. find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1)...

    Text Solution

    |

  12. Find the values of 'a' and 'b' for which the following hold : [(3,2)...

    Text Solution

    |

  13. Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] (a) Find AB. (b) Is BA...

    Text Solution

    |

  14. If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)], find AB and BA and...

    Text Solution

    |

  15. Show that AB = BA in each of the following cases: (i) A=[{:(costheta...

    Text Solution

    |

  16. show that (i) [{:(5,-1),(6,7):}][{:(2,1),(3,4):}]ne[{:(2,3),(3,4):}...

    Text Solution

    |

  17. Show with the help of an example that AB=O whereas BA!=O, where O is a...

    Text Solution

    |

  18. Give an example of three matrices A ,\ B ,\ C such that A B=A C but...

    Text Solution

    |

  19. If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

    Text Solution

    |

  20. If A=[(2,0,1),(2,1,3),(1,-1,0)], then find (A^(2)-5A)

    Text Solution

    |