Home
Class 12
MATHS
If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),...

If `P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)]`, find PQ.

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of matrices \( P \) and \( Q \), we will follow the matrix multiplication rules. Given: \[ P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 2 & 3 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 4 & 1 \end{pmatrix} \] ### Step 1: Verify the dimensions The matrix \( P \) is of order \( 3 \times 3 \) and the matrix \( Q \) is of order \( 3 \times 2 \). The number of columns in \( P \) (which is 3) matches the number of rows in \( Q \) (which is also 3). Thus, the multiplication \( PQ \) is possible, and the resulting matrix will be of order \( 3 \times 2 \). **Hint:** Always check the dimensions of the matrices before multiplying to ensure that the multiplication is valid. ### Step 2: Calculate the elements of the resulting matrix \( PQ \) The resulting matrix \( R = PQ \) will be calculated as follows: 1. **Element \( R_{11} \)**: \[ R_{11} = (0 \times 1) + (1 \times 3) + (0 \times 4) = 0 + 3 + 0 = 3 \] 2. **Element \( R_{12} \)**: \[ R_{12} = (0 \times 2) + (1 \times 0) + (0 \times 1) = 0 + 0 + 0 = 0 \] 3. **Element \( R_{21} \)**: \[ R_{21} = (0 \times 1) + (2 \times 3) + (1 \times 4) = 0 + 6 + 4 = 10 \] 4. **Element \( R_{22} \)**: \[ R_{22} = (0 \times 2) + (2 \times 0) + (1 \times 1) = 0 + 0 + 1 = 1 \] 5. **Element \( R_{31} \)**: \[ R_{31} = (2 \times 1) + (3 \times 3) + (0 \times 4) = 2 + 9 + 0 = 11 \] 6. **Element \( R_{32} \)**: \[ R_{32} = (2 \times 2) + (3 \times 0) + (0 \times 1) = 4 + 0 + 0 = 4 \] ### Step 3: Assemble the resulting matrix Now we can write the resulting matrix \( R \): \[ R = PQ = \begin{pmatrix} 3 & 0 \\ 10 & 1 \\ 11 & 4 \end{pmatrix} \] ### Final Answer Thus, the product \( PQ \) is: \[ \begin{pmatrix} 3 & 0 \\ 10 & 1 \\ 11 & 4 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions I|28 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Given A=[(1,1,1),(2,4,1),(2,3,1)], B=[(2,3),(3,4)]. Find P such that BPA= [(1,0,1),(0,1,0)]

Show that (i) [(5,-1),(6,7)][(2,1),(3,4)]!=[(2,1),(3,4)][(5,-1),(6,7)] (ii) [(1,2,3),(0,1,0),(1,1,1)][(-1,1,0),(0,-1,1),(2,3,4)]!=[(-1,1,0),(0,-1,1),(2,3,4)][(1,2,3),(0,1,0),(1,1,0)] .

Knowledge Check

  • Let P_1=I=[(1,0,0),(0,1,0),(0,0,1)], P_2=[(1,0,0),(0,0,1),(0,1,0)], P_3=[(0,1,0),(1,0,0),(0,0,1)] , P_4=[(0,1,0),(0,0,1),(1,0,0)], P_5=[(0,0,1),(1,0,0),(0,1,0)], P_6=[(0,0,1),(0,1,0),(1,0,0)] and X=sum_(k=1)^6[(2,1,3),(1,0,2),(3,2,1)]P_k^T where P_k^T denotes the transpose of the matrix P_k . Then which of the following options is(are) correct ?

    A
    The sum of diagonal entries of X is 18
    B
    X is a symmetric matrix
    C
    X=30I is an invertible matrix
    D
    If `X[(1),(1),(1)]=alpha[(1),(1),(1)]`, then `alpha`=30
  • let P_(1)=[(1,0,0),(0,1,0),(0,0,1)],P_(2)=[(1,0,0),(0,0,1),(0,1,0)],P_(3)=[(0,1,0),(1,0,0),(0,0,1)],P_(4)=[(0,1,0),(0,0,1),(1,0,0)],P_(5)=[(0,0,1),(1,0,0),(0,1,0)],P_(6)=[(0,0,1),(0,1,0),(1,0,0)] and X=sum_(k=1)^(6) P_(k)[(2,1,3),(1,0,2),(3,2,1)]P_(k)^(T) Where P_(k)^(T) is transpose of matrix P_(k) . Then which of the following options is/are correct?

    A
    X is a symmetric matrix
    B
    if `X=[(1),(1),(1)]=alpha[(1),(1),(1)]`, then `alpha=30`
    C
    X-30I is an invertible matrix
    D
    The sum of diagonal entries of X is 18.
  • If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)] then (PQ)^(-1) equals to

    A
    zero matrix
    B
    `I_(3)`
    C
    diag `[-5, -5, -5]`
    D
    `-(1)/(5)I_(3)`
  • Similar Questions

    Explore conceptually related problems

    Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

    If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=……………

    If P=[(-3,1),(2,5)],Q=[(1,6),(-4,0)] and R=[(4,-1),(2,3)] find the value of 4P-2Q+3R .

    show that (i) [{:(5,-1),(6,7):}][{:(2,3),(3,4):}]ne[{:(2,3),(3,4):}][{:(5,-1),(6,7):}] (ii) [{:(1,2,3),(0,1,0),(1,1,0):}][{:(-1,1,0),(0,-1,1),(2,3,4):}] ne[{:(-1,1,0),(0,-1,1),(2,3,4):}][{:(1,2,3),(0,1,0),(1,1,0):}]

    If P=[(i,0,-i),(0,-i,i),(-i,i,0)] and Q=[(-i,i),(0,0),(i,-i)] then PQ is equal to (A) [(-2,2),(1,-1),(1,-1)] (B) [(2,-2),(-1,-1),(-1,1)] (C) [(2,2),(-1,1)] (D) [(1,0,0),(0,1,0),(0,0,1)]