Home
Class 12
MATHS
If veca = 2 hat i + 3 hat j - hat k , ve...

If `veca = 2 hat i + 3 hat j - hat k , vec b = hat i + 2 hat j - 5 hat k, vec c= hat 3i + 5 hatj = hat k`, then a vector perpendicular to `vec a` and in the plane containing `vec b` and `vec c` is

A

`-17 hat i + 21 hat j - 97 hat k`

B

`17 hat i + 21 hat j - 123 hat k`

C

`-17 hat i - 21 hat j + 97 hat k`

D

`-17 hat i - 21 hat j - 97 hat k`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • KARNATAKA CET 2006

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos
  • KARNATAKA CET 2008

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

Find vec a +vec b if vec a = hat i - hat j and vec b =2 hat i

Let vec(a) = hat(i) + 4hat(j) + 2hat(k), vec(b) = 3hat(i) - 2hat(j) + 7hat(k) and vec(c )= 2hat(i) - hat(j) + 4hat(k) . Find a vector vec(p) which is perpendicular to both vec(a) and vec(b) and vec(p).vec(c ) = 18 .

Knowledge Check

  • if vec a= 2 hat i+ lambda hat j+ hat k and vec b= hat i+ 2 hat j+ 3 hat k are orthogonal then the value of lambda

    A
    `(3)/(2)`
    B
    1
    C
    `-(5)/(2)`
    D
    0
  • Consider vec(F)=4hat(i) - 3hat(j) . A vector perpendicular to vec(F) is :

    A
    `6hat(i)`
    B
    `7hat(k)`
    C
    `4hat(i) + 3hat(j)`
    D
    `3 hat(i)- 4hat(j)`
  • If vec A =2 hat i+ 3 hat j+ 8 hat k is perpendicular to vec B= 4 hat j -4 hat i+ alpha hat k , then the value of alpha

    A
    1
    B
    `(1)/(2)`
    C
    -1
    D
    `-(1)/(2)`
  • Similar Questions

    Explore conceptually related problems

    let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

    If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b) = -hat(i) + 2hat(j) + hat(k) and vec(c )=3hat(i)+2hat(j) such that vec(a)+lambda vec(b) is perpendicular to vec(c) , then find the value of lambda .

    If vec(a) = 2hat(i) - 3hat(j) + hat(k), vec(b) = -hat(i) + hat(k), vec(c ) = 2hat(j) - hat(k) are three vectors, find the area of the parallelogram having diagonals vec(a) + vec(b) and vec(b) + vec(c ) .

    If vec(a) = 2hat(i) - 3hat(j) + 4hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c ) = 3hat(i) + 4hat(j) - hat(k) , then find vec(a).(vec(b) xx vec(c )) and (vec(a) xx vec(b)).vec(c ) . Is, vec(a).(vec(b) xx vec(c )) = (vec(a) xx vec(b)).vec(c ) ?

    If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c ) = hat(i) - 2hat(j) + hat(k) , find a vector of magnitude 6 units which is parallel to the vector 2vec(a) - vec(b) + 3vec(c ) .