Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(dx)/([...

The value of `int_(-pi//2)^(pi//2)(dx)/([x] + [ sin x] +4)`, where [t] denotes the greatest integer than or equal to t , is

A

`(1)/(12)(7pi-5)`

B

`(1)/(12)(7pi+5)`

C

`(3)/(10) (4 pi-3)`

D

`(3)/(20) (4 pi-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{[\text{x}] + [\sin x] + 4} \] where \([\cdot]\) denotes the greatest integer function, we will break the integral into two parts: from \(-\frac{\pi}{2}\) to \(0\) and from \(0\) to \(\frac{\pi}{2}\). ### Step 1: Split the Integral We can write: \[ I = \int_{-\frac{\pi}{2}}^{0} \frac{dx}{[\text{x}] + [\sin x] + 4} + \int_{0}^{\frac{\pi}{2}} \frac{dx}{[\text{x}] + [\sin x] + 4} \] ### Step 2: Evaluate the First Integral For the interval \([- \frac{\pi}{2}, 0]\): - \([\text{x}]\) will be \(-1\) (since \(-1 < x < 0\)). - \([\sin x]\) will range from \(-1\) to \(0\). Thus, \([\sin x] = -1\) for \(-1 < \sin x < 0\). So, in this interval: \[ I_1 = \int_{-\frac{\pi}{2}}^{0} \frac{dx}{-1 - 1 + 4} = \int_{-\frac{\pi}{2}}^{0} \frac{dx}{2} \] This simplifies to: \[ I_1 = \frac{1}{2} \left[ x \right]_{-\frac{\pi}{2}}^{0} = \frac{1}{2} \left( 0 - \left(-\frac{\pi}{2}\right) \right) = \frac{\pi}{4} \] ### Step 3: Evaluate the Second Integral For the interval \([0, \frac{\pi}{2}]\): - \([\text{x}]\) will be \(0\) (since \(0 \leq x < 1\)). - \([\sin x]\) will range from \(0\) to \(1\). Thus, \([\sin x] = 0\) for \(0 < \sin x < 1\). So, in this interval: \[ I_2 = \int_{0}^{\frac{\pi}{2}} \frac{dx}{0 + 0 + 4} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{4} \] This simplifies to: \[ I_2 = \frac{1}{4} \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{1}{4} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{8} \] ### Step 4: Combine the Results Now, we can combine both parts: \[ I = I_1 + I_2 = \frac{\pi}{4} + \frac{\pi}{8} \] ### Step 5: Find a Common Denominator To add these fractions, we need a common denominator: \[ \frac{\pi}{4} = \frac{2\pi}{8} \] Thus, \[ I = \frac{2\pi}{8} + \frac{\pi}{8} = \frac{3\pi}{8} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{3\pi}{8}} \]

To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{[\text{x}] + [\sin x] + 4} \] where \([\cdot]\) denotes the greatest integer function, we will break the integral into two parts: from \(-\frac{\pi}{2}\) to \(0\) and from \(0\) to \(\frac{\pi}{2}\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise ESTIMATION, GAMMA FUNCTION AND DERIVATIVE OF INDEFINITE INTEGRAL|22 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

The value of I=int_(-pi//2)^(pi//2) (cos x dx )/(1+2[ sin^(-1)(sin x)]) (where ,[.] denotes greatest integer function ) is …

Knowledge Check

  • The value of int_(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] denotes the greatest integer function is equal to

    A
    0
    B
    `(pi)/(log 2)`
    C
    `(2pi)/(log 2)`
    D
    none
  • The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

    A
    `pi+ cot 1`
    B
    `pi+ cot 2`
    C
    `pi+ cot1 + cot2`
    D
    `cot 1+cot 2`
  • The value of int_(-20pi)^(20 pi) [ sin x + cos x] dx is (where [.] denotes greatest integer function)

    A
    `10 pi`
    B
    `-20 pi`
    C
    `20 pi`
    D
    `-10 pi`
  • Similar Questions

    Explore conceptually related problems

    The value of int_(pi)^(2pi) [2 sin x] dx , where [] represents the greatest integer function, is

    Evaluate int _( pi//4) ^(pi//2)[sin x + [(2x)/(pi)]]dx, (where [**] denotes greatest integer function)

    int[cot x]dx ,where [.] denotes the greatest integer function,is equal to (1)pi/2 (2) 1(3) (4)

    The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

    The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is