Home
Class 12
MATHS
If int0^xf(t)dt=x^2+intx^1t^2f(t)dt, the...

If `int_0^xf(t)dt=x^2+int_x^1t^2f(t)dt,` then `f^(prime)(1/2)` is

A

`(24)/(25)`

B

`(18)/(25)`

C

`(6)/(25)`

D

`(4)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `int_(0)^(x) f (t) dt = x^(2)+int_(x)^(1)t^(2)f (t) dt`
On differentiating both sides , W. r. t . 'x' we get
`f(x) =2x+0-x^(2)f(x)`
`[ :' (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt ] = f (Psi(x))(d)/(dx)Psi (x) - f (phi(x))(d)/(dx)phi(x)]`
`rArr (1+x^(2))f(x) = 2x rArr f(x) = (2x)/(1+x^(2))`
On differentiating W . r. t . 'x' we get
`f'(x)((1+x^(2))(2)-(2x)(0+2x))/((1+x^(2))^(2))`
`= (2+2x^(2)-4x^(2))/((1+x^(2))^(2))=(2-2x^(2))/((1+x^(2))^(2))`
`:. f ' ((1)/(2))=(2-2((1)/(2))^(2))/((1+((1)/(2))^(2))^(2))=(2-2((1)/(4)))/((1+(1)/(2))^(2))=(2-(1)/(2))/((5)/(4))^(2)=((3)/(2))/((25)/(16))=(24)/(25)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    IIT JEEĀ PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos
  • DEFINITE INTEGRATION

    IIT JEEĀ PREVIOUS YEAR|Exercise PERIODICITY OF INTEGRAL FUNCTIONS|6 Videos
  • COMPLEX NUMBERS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY (INTEGER ANSWER TYPE QUESTION)|1 Videos
  • DIFFERENTIAL EQUATIONS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 3 APPLICATIONS OF HOMOGENEOUS DIFFERENTIAL EQUATIONS <br> ANALYTICAL & DESCRIPTIVE QUESTIONS|7 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

If int_0^x f(t)dt=x+int_x^1 t f(t)dt , then f(1)= (A) 1/2 (B) 0 (C) 1 (D) -1/2

Knowledge Check

  • If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

    A
    `6/25`
    B
    `24/25`
    C
    `18/25`
    D
    `4/5`
  • and g(x) = int_0^xf(t)dt , then :

    A
    `g(x)` has local minima at x = e and local maxima at x = 1 + ln 2
    B
    g(x) has local maxima at x = 1 and local minima at x = 2
    C
    g(x) does not have local maxima
    D
    g(x) does not have local minima
  • Similar Questions

    Explore conceptually related problems

    If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

    If int_(0)^(x) f(t) dt= x + int_(x)^(1) t f(t) dt , then the valeu of f(1) is

    If f(x)=int_(0)^(x)tf(t)dt+2, then

    If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

    If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

    f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)