Home
Class 12
MATHS
Let omega= e^((ipi)/3) and a, b, c, x,...

Let ` omega= e^((ipi)/3) and a, b, c, x, y, z` be non-zero complex numbers such that `a+b+c = x, a + bomega + comega^2 = y, a + bomega^2 + comega = z`.Then, the value of `(|x|^2+|y|^2|+|y|^2)/(|a|^2+|b|^2+|c|^2)`

Text Solution

Verified by Experts

The correct Answer is:
3

Priniting error `=e^i(2pi)/(3)`
Then, `(|x^2|+|y|^2+|z|^2)/(|a|^2+|b|^2+|c|^2)=3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEEĀ PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY ( ANALYTICAL & DESCRIPTIVE QUESTIONS)|4 Videos
  • CIRCLE

    IIT JEEĀ PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEEĀ PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

If omega=e^(i2pi//3) , and a,b,c,x,y,z be non-zero complex numbers such that a+b+c=x, a+bomega+comega^(2)=y, a+bomega^(2)+comega=z Then, the value of (|x|^(2)+|y|^(2)+|z|^(2))/(|a|^(2)+|b|^(2)+|c|^(2)| , is

Let omega=e^((i pi)/(3)) and a,b,c,x,y,z be non-zero complex numbers such that a+b+c=x,a+b omega+c omega^(2)=y,a+b omega^(2)+c omega=z Then,the value of (|x|^(2)+|y|^(2)|+|y|^(2))/(|a|^(2)+|b|^(2)+|c|^(2))

Knowledge Check

  • Let omega = e ^(i pi //3) and a, b, c, x, y, z be non-zero complex numbers such that a + b + c = x , a + b omega + c omega^(2) = y , a + b omega^(2) + c omega = z Then the value of (|x|^(2)+|y|^(2)+|z|^(2))/(|a|^(2)+|b|^(2)+|c|^(2)) is

    A
    3
    B
    4
    C
    0
    D
    1
  • If x = a + b y = a omega + b omega ^(2) , z = a omega ^(2) + b omega then x^(3) + y^(3) + z^(3) =

    A
    `3 (a^(3) + b^(3))`
    B
    ` 3 (a^(3) - b^(3))`
    C
    0
    D
    `a^(3) + b^(3) + c^(3) - 3abc`
  • If x= b + c - 2a , y = c + a - 2 b , z = a + b -2 c then the value of x^(2) + y^(2) - z^(2) + 2xy is

    A
    0
    B
    a+ b + c
    C
    a - b + c
    D
    a + b - c
  • Similar Questions

    Explore conceptually related problems

    Let omega =e^(ipi/3) and a,b,c,x,y,z be nonzero complex number such that a+b+c=x, a+bomega+comega^2=y, a+bomega^2+comega=z . Then the value of (|x|^2+|y|^2+|z|^2)/(|a|^2+|b|^2+|c|^2) is

    If =a+b,y=aomega+bomega^2 and z=aomega^2+bomega, prove tht xyz=a^3+b^3

    If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

    If omega is a cube root of unity, prove that (a+bomega+comega^2)/(c+aomega+bomega^2)=omega^2

    If a ^(x) = b ^(y) = c ^(z) and b ^(2) = ac, then value of y is