Home
Class 12
MATHS
int(dx)/(sqrt(4x^(2)+1))...

`int(dx)/(sqrt(4x^(2)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{\sqrt{4x^2 + 1}}\), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{\sqrt{4x^2 + 1}} \] ### Step 2: Simplify the Expression Inside the Square Root Notice that \(4x^2 + 1\) can be rewritten as: \[ \sqrt{4x^2 + 1} = \sqrt{(2x)^2 + 1} \] This allows us to use a trigonometric substitution. ### Step 3: Use Substitution Let \(2x = t\). Then, we have: \[ dx = \frac{dt}{2} \] Now substitute \(2x\) and \(dx\) into the integral: \[ \int \frac{dx}{\sqrt{4x^2 + 1}} = \int \frac{\frac{dt}{2}}{\sqrt{t^2 + 1}} = \frac{1}{2} \int \frac{dt}{\sqrt{t^2 + 1}} \] ### Step 4: Integrate The integral \(\int \frac{dt}{\sqrt{t^2 + 1}}\) is a standard integral, which equals \(\ln(t + \sqrt{t^2 + 1}) + C\). Therefore, we have: \[ \frac{1}{2} \int \frac{dt}{\sqrt{t^2 + 1}} = \frac{1}{2} \ln(t + \sqrt{t^2 + 1}) + C \] ### Step 5: Substitute Back Now, substitute \(t = 2x\) back into the expression: \[ = \frac{1}{2} \ln(2x + \sqrt{(2x)^2 + 1}) + C \] This simplifies to: \[ = \frac{1}{2} \ln(2x + \sqrt{4x^2 + 1}) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{\sqrt{4x^2 + 1}} = \frac{1}{2} \ln(2x + \sqrt{4x^2 + 1}) + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(1+4x^(2)))

Knowledge Check

  • int(dx)/(sqrt(4x^2-5))=

    A
    `(1)/(4)log|x+sqrt(x^2-(5)/(4))|+c`
    B
    `(1)/(2)log|x+sqrt(x^2-(5)/(4))|+c`
    C
    `(1)/(4)log|x+sqrt(x^2-5)|+c`
    D
    `(1)/(2)log|x+sqrt(x^2-5)|+c`
  • int(dx)/(sqrt(16-4x^(2)))=?

    A
    `(1)/(2) sin ^(-1)""(x)/(2)+C`
    B
    `(1)/(4) sin ^(-1)""(x)/(2)+C`
    C
    `(1)/(2) sin ^(-1)""(x)/(4)+C`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(sqrt(9-4x^(2)))

    int(dx)/(sqrt(4x^(2)+3))

    int(dx)/(sqrt(4x^(2)+5))

    int(dx)/(sqrt(4x^(2)-9))

    int (dx)/(sqrt(4x^(2)-25))

    int(x)/(sqrt(1-4x^(2)))dx