Home
Class 12
MATHS
Find vec(a).vec(b) when (i) vec(a)=hat...

Find `vec(a).vec(b)` when
(i) `vec(a)=hat(i)-2hat(j)+hat(k)` and `vec(b)=3 hat(i)-4 hat(j)-2 hat(k)`
(ii) `vec(a)=hat(i)+2hat(j)+3hat(k)` and `vec(b)=-2hat(j)+4hat(k)`
(iii) `vec(a)=hat(i)-hat(j)+5hat(k)` and `vec(b)=3 hat(i)-2 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the dot product of the vectors \(\vec{a}\) and \(\vec{b}\), we will use the formula for the dot product: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] where \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\). ### Part (i) Given: \[ \vec{a} = \hat{i} - 2\hat{j} + \hat{k} \quad \text{and} \quad \vec{b} = 3\hat{i} - 4\hat{j} - 2\hat{k} \] 1. Identify the components: - \(a_1 = 1\), \(a_2 = -2\), \(a_3 = 1\) - \(b_1 = 3\), \(b_2 = -4\), \(b_3 = -2\) 2. Apply the dot product formula: \[ \vec{a} \cdot \vec{b} = (1)(3) + (-2)(-4) + (1)(-2) \] 3. Calculate each term: - \(1 \cdot 3 = 3\) - \(-2 \cdot -4 = 8\) - \(1 \cdot -2 = -2\) 4. Sum the results: \[ \vec{a} \cdot \vec{b} = 3 + 8 - 2 = 9 \] ### Part (ii) Given: \[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \quad \text{and} \quad \vec{b} = -2\hat{j} + 4\hat{k} \] 1. Identify the components: - \(a_1 = 1\), \(a_2 = 2\), \(a_3 = 3\) - \(b_1 = 0\), \(b_2 = -2\), \(b_3 = 4\) (note that \(b_1 = 0\) since there is no \(\hat{i}\) component) 2. Apply the dot product formula: \[ \vec{a} \cdot \vec{b} = (1)(0) + (2)(-2) + (3)(4) \] 3. Calculate each term: - \(1 \cdot 0 = 0\) - \(2 \cdot -2 = -4\) - \(3 \cdot 4 = 12\) 4. Sum the results: \[ \vec{a} \cdot \vec{b} = 0 - 4 + 12 = 8 \] ### Part (iii) Given: \[ \vec{a} = \hat{i} - \hat{j} + 5\hat{k} \quad \text{and} \quad \vec{b} = 3\hat{i} - 2\hat{k} \] 1. Identify the components: - \(a_1 = 1\), \(a_2 = -1\), \(a_3 = 5\) - \(b_1 = 3\), \(b_2 = 0\), \(b_3 = -2\) (note that \(b_2 = 0\) since there is no \(\hat{j}\) component) 2. Apply the dot product formula: \[ \vec{a} \cdot \vec{b} = (1)(3) + (-1)(0) + (5)(-2) \] 3. Calculate each term: - \(1 \cdot 3 = 3\) - \(-1 \cdot 0 = 0\) - \(5 \cdot -2 = -10\) 4. Sum the results: \[ \vec{a} \cdot \vec{b} = 3 + 0 - 10 = -7 \] ### Summary of Results: - (i) \(\vec{a} \cdot \vec{b} = 9\) - (ii) \(\vec{a} \cdot \vec{b} = 8\) - (iii) \(\vec{a} \cdot \vec{b} = -7\)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Knowledge Check

  • If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

    A
    `sqrt(174)`
    B
    `sqrt(84)`
    C
    `sqrt(93)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Find the unit vectors perpendicular to both vec(a) and vec(b) when (i) vec(a) = 3 hat(i)+hat(j)-2 hat(k) and vec(b)= 2 hat(i) + 3 hat(j) - hat(k) (ii) vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b)= hat(i) +2hat(j) - hat(k) (iii) vec(a) = hat(i) + 3 hat(j) - 2 hat (k) and vec(b)= -hat(i) + 3 hat(k) (iv) vec(a) = 4 hat(i) + 2 hat(j)-hat(k) and vec(b) = hat(i) + 4 hat(j) - hat(k)

    Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

    Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

    Find the value of lambda for which vec(a) and vec(b) are perpendicular, where (i) vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=(hat(i)-2hat(j)+3hat(k)) (ii) vec(a)=3hat(i)-hat(j)+4hat(k) and vec(b)=- lamnda hat(i)+3 hat(j)+3 hat(k) (iii) vec(A)=2hat(i)+4hat(j)-hat(k) and vec(b)=3 hat(i)-2 hat(j)+lambda hat(k) (iv) vec(a)=3 hat(i)+2 hat(j)-5 hat(k) and vec(b)=-5 hat(j)+lambda hat(k)

    verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

    If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

    Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)