Home
Class 12
MATHS
intsqrt(4-x^(2))dx...

`intsqrt(4-x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{4 - x^2} \, dx\), we can follow these steps: ### Step 1: Identify the form of the integral We recognize that the integral \(\sqrt{4 - x^2}\) can be related to the standard integral form \(\int \sqrt{a^2 - x^2} \, dx\), where \(a = 2\). ### Step 2: Use the standard formula The standard formula for the integral \(\int \sqrt{a^2 - x^2} \, dx\) is given by: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \] where \(C\) is the constant of integration. ### Step 3: Substitute \(a = 2\) In our case, \(a = 2\). We can substitute this value into the formula: \[ \int \sqrt{4 - x^2} \, dx = \frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1}\left(\frac{x}{2}\right) + C \] ### Step 4: Simplify the expression Now, we simplify the expression: \[ \int \sqrt{4 - x^2} \, dx = \frac{x}{2} \sqrt{4 - x^2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C \] ### Final Answer Thus, the final answer for the integral \(\int \sqrt{4 - x^2} \, dx\) is: \[ \frac{x}{2} \sqrt{4 - x^2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

intsqrt(4-9x^(2))dx

intsqrt(4x^(2)+9)dx

intsqrt(x^(2)+x)dx

intsqrt(x^(2)-2)dx

intsqrt(x^(2)+5)dx

intsqrt(x^(2)-5)dx

intsqrt(2x-x^(2))dx

Evaluate : intsqrt(4-x-x^(2))dx .

intsqrt(1-4x-x^(2))dx

Evaluate : (i) intsqrt(9-x^(2))dx (ii) intsqrt(1-4x^(2))dx (iii) intsqrt(16-9x^(2))dx