Home
Class 12
MATHS
int(dx)/(sqrt(1+2x-3x^(2)))...

`int(dx)/(sqrt(1+2x-3x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\sqrt{1 + 2x - 3x^2}}, \] we will follow these steps: ### Step 1: Factor out the coefficient of \(x^2\) The expression under the square root is \(1 + 2x - 3x^2\). We can factor out \(-3\) from the quadratic expression. \[ 1 + 2x - 3x^2 = -3\left(\frac{-1}{3} - \frac{2}{3}x + x^2\right). \] ### Step 2: Rewrite the integral Now, we can rewrite the integral by factoring out \(-3\): \[ \int \frac{dx}{\sqrt{1 + 2x - 3x^2}} = \int \frac{dx}{\sqrt{-3\left(x^2 + \frac{2}{3}x - \frac{1}{3}\right)}}. \] This simplifies to: \[ \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{-\left(x^2 + \frac{2}{3}x - \frac{1}{3}\right)}}. \] ### Step 3: Complete the square Next, we complete the square for the quadratic expression \(x^2 + \frac{2}{3}x - \frac{1}{3}\): \[ x^2 + \frac{2}{3}x - \frac{1}{3} = \left(x + \frac{1}{3}\right)^2 - \frac{1}{3} - \frac{1}{3} = \left(x + \frac{1}{3}\right)^2 - \frac{2}{3}. \] ### Step 4: Substitute into the integral Now we substitute this back into the integral: \[ \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{-\left(\left(x + \frac{1}{3}\right)^2 - \frac{2}{3}\right)}}. \] ### Step 5: Use trigonometric substitution We can use the substitution \(x + \frac{1}{3} = \sqrt{\frac{2}{3}} \sin \theta\): \[ dx = \sqrt{\frac{2}{3}} \cos \theta \, d\theta. \] Now, substitute this into the integral: \[ \frac{1}{\sqrt{3}} \int \frac{\sqrt{\frac{2}{3}} \cos \theta \, d\theta}{\sqrt{-\left(\frac{2}{3} \sin^2 \theta - \frac{2}{3}\right)}}. \] This simplifies to: \[ \frac{1}{\sqrt{3}} \int \frac{\sqrt{\frac{2}{3}} \cos \theta \, d\theta}{\sqrt{\frac{2}{3}(1 - \sin^2 \theta)}} = \frac{1}{\sqrt{3}} \int \frac{\sqrt{\frac{2}{3}} \cos \theta \, d\theta}{\sqrt{\frac{2}{3} \cos^2 \theta}}. \] ### Step 6: Simplify the integral This simplifies to: \[ \frac{1}{\sqrt{3}} \int d\theta = \frac{1}{\sqrt{3}} \theta + C. \] ### Step 7: Back substitute Now we need to back substitute for \(\theta\): \[ \theta = \sin^{-1}\left(\frac{3x + 1}{\sqrt{2}}\right). \] Thus, the final result is: \[ \frac{1}{\sqrt{3}} \sin^{-1}\left(\frac{3x + 1}{\sqrt{2}}\right) + C. \] ### Summary of Steps: 1. Factor out the coefficient of \(x^2\). 2. Rewrite the integral. 3. Complete the square. 4. Substitute into the integral. 5. Use trigonometric substitution. 6. Simplify the integral. 7. Back substitute to find the final result.

To solve the integral \[ \int \frac{dx}{\sqrt{1 + 2x - 3x^2}}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt((x-3)^(2)-1))

int(x)/(sqrt(1-2x))dx

int(x)/(sqrt(1-2x))dx

int(dx)/(sqrt(2x^(2)+3x-2))

Evaluate: int(1)/(sqrt(3-2x-x^(2)))dx

" (a) "int(dx)/(sqrt((3-x)^(2)+1))

int(dx)/((1+x)sqrt(3+2x-x^(2)))=

int(1)/(sqrt(1-(3x+2)^(2)))dx

Evaluate: (i) int(a^(x))/(sqrt(1-a^(2x)))dx (ii) int(2x)/(sqrt(1-x^(2)-x^(4)))dx

int(1)/(sqrt2+x-3x)dx