Home
Class 12
MATHS
int(1)^(e)((logx)^(2))/(x)dx=?...

`int_(1)^(e)((logx)^(2))/(x)dx=?`

A

`(1)/(3)`

B

`(1)/(3)e^(2)`

C

`(1)/(3)(e^(3)-1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{1}^{e} \frac{(\log x)^{2}}{x} \, dx, \] we will use the substitution method. ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt = e^t \, dt. \] ### Step 2: Change of Limits Next, we need to change the limits of integration according to our substitution: - When \( x = 1 \), \( t = \log 1 = 0 \). - When \( x = e \), \( t = \log e = 1 \). Thus, the limits change from \( x = 1 \) to \( x = e \) into \( t = 0 \) to \( t = 1 \). ### Step 3: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ \int_{1}^{e} \frac{(\log x)^{2}}{x} \, dx = \int_{0}^{1} t^{2} \, dt. \] ### Step 4: Integrate Now we can integrate \( t^{2} \): \[ \int t^{2} \, dt = \frac{t^{3}}{3} + C. \] ### Step 5: Evaluate the Integral We will evaluate this from \( t = 0 \) to \( t = 1 \): \[ \left[ \frac{t^{3}}{3} \right]_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3} = \frac{1}{3} - 0 = \frac{1}{3}. \] ### Final Answer Thus, the value of the integral is \[ \int_{1}^{e} \frac{(\log x)^{2}}{x} \, dx = \frac{1}{3}. \] ---

To solve the integral \[ \int_{1}^{e} \frac{(\log x)^{2}}{x} \, dx, \] we will use the substitution method. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int((logx)^(2))/(x)dx.

int_(1)^(2)(logx)/(x)dx

Knowledge Check

  • int((x+1)(x+logx)^(2))/(x)dx=?

    A
    `(1)/(3)(x+logx)^(3)+C`
    B
    `(x^(2))/(2)+x+C`
    C
    `(x^(3))/(3)+(x^(2))/(2)+x+C`
    D
    none of these
  • int(log(x//e))/((logx)^(2))dx=

    A
    `(x+1)/((logx)^(2))+c`
    B
    `(x-1)/((logx)^(2))+c`
    C
    `(x)/(logx)+c`
    D
    `(logx)/(x)+c`
  • int_(1)^(x) (logx^(2))/x dx is equal to

    A
    `(logx)^(2)`
    B
    `(1)/(2)(logx)^(2)`
    C
    `(logx^(2))/(2)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    int_(1)^(2)(logx)/(x)dx

    int_(1)^(3)(logx)/((1+x)^(2))dx

    int_(1)^(2)(dx)/(x(1+logx)^(2))

    int(logx-1)/(x)dx

    int(sqrt(1+(logx)^2))/(x)dx=