Home
Class 12
MATHS
Find ( vec (a) xxvec (b)) and |vec(a) xx...

Find `( vec (a) xxvec (b))` and `|vec(a) xx vec (b)|`,when
(i) `vec(a) = hat(i)-hat(j)+ 2hat(k)` and `vec(b)= 2 hat(i)+3 hat(j)-4hat(k)`
(ii)`vec(a)= 2hat (i)+hat(j)+ 3hat(k)` and `vec(b)= 3hat(i)+5 hat(j) - 2 hat(k)`
(iii) `vec(a)=hat(i)- 7 hat(j)+ 7hat(k)` and `vec(b) = 3 hat(i)-2hat(j)+2 hat(k)`
(iv) `vec(a)= 4hat(i)+ hat(j)- 2hat(k)` and `vec(b) = 3 hat(i)+hat(k)`
(v) `vec(a) = 3 hat(i) + 4 hat(j)` and `vec(b) = hat(i)+hat(j)+hat(k)`

Text Solution

AI Generated Solution

To solve the problem, we will find the cross product of the vectors \(\vec{a}\) and \(\vec{b}\) for each part and then calculate the magnitude of the resulting vector. ### Part (i) Given: \[ \vec{a} = \hat{i} - \hat{j} + 2\hat{k}, \quad \vec{b} = 2\hat{i} + 3\hat{j} - 4\hat{k} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    RS AGGARWAL|Exercise Exercise 9C|9 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos

Similar Questions

Explore conceptually related problems

Find the unit vectors perpendicular to both vec(a) and vec(b) when (i) vec(a) = 3 hat(i)+hat(j)-2 hat(k) and vec(b)= 2 hat(i) + 3 hat(j) - hat(k) (ii) vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b)= hat(i) +2hat(j) - hat(k) (iii) vec(a) = hat(i) + 3 hat(j) - 2 hat (k) and vec(b)= -hat(i) + 3 hat(k) (iv) vec(a) = 4 hat(i) + 2 hat(j)-hat(k) and vec(b) = hat(i) + 4 hat(j) - hat(k)

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Knowledge Check

  • If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

    A
    `sqrt(174)`
    B
    `sqrt(84)`
    C
    `sqrt(93)`
    D
    none of these
  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • Similar Questions

    Explore conceptually related problems

    Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

    Find the value of lambda for which vec(a) and vec(b) are perpendicular, where (i) vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=(hat(i)-2hat(j)+3hat(k)) (ii) vec(a)=3hat(i)-hat(j)+4hat(k) and vec(b)=- lamnda hat(i)+3 hat(j)+3 hat(k) (iii) vec(A)=2hat(i)+4hat(j)-hat(k) and vec(b)=3 hat(i)-2 hat(j)+lambda hat(k) (iv) vec(a)=3 hat(i)+2 hat(j)-5 hat(k) and vec(b)=-5 hat(j)+lambda hat(k)

    verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

    If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

    Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

    Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).