Home
Class 12
MATHS
|["cos"70^(@), "sin"20^(@)], ["sin"70^(@...

`|["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?`

A

`1`

B

`0`

C

`"cos"50^(@)`

D

`"sin"50^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \cos 70^\circ & \sin 20^\circ \\ \sin 70^\circ & \cos 20^\circ \end{vmatrix} \] we will follow these steps: ### Step 1: Calculate the determinant using the formula The formula for the determinant of a 2x2 matrix \[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \] is given by \( ad - bc \). Here, we have: - \( a = \cos 70^\circ \) - \( b = \sin 20^\circ \) - \( c = \sin 70^\circ \) - \( d = \cos 20^\circ \) So, we can write: \[ D = \cos 70^\circ \cdot \cos 20^\circ - \sin 20^\circ \cdot \sin 70^\circ \] ### Step 2: Apply the cosine addition formula We recognize that the expression we obtained resembles the cosine of a sum. The cosine addition formula states: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] In our case, let \( A = 70^\circ \) and \( B = 20^\circ \). Therefore, we have: \[ D = \cos(70^\circ + 20^\circ) = \cos 90^\circ \] ### Step 3: Evaluate \(\cos 90^\circ\) We know that: \[ \cos 90^\circ = 0 \] ### Final Answer Thus, the value of the determinant is: \[ D = 0 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6C|8 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

cos70^(@)+sin40^(@)=

Find the distance between (a " sin "70^(@),-a" sin "20^(@)) and (-a" sin "70^(@),a" sin "20^(@)) .

Knowledge Check

  • sec70^(@)sin20^(@)+cos20^(@)"cosec"70^(@)=?

    A
    `0`
    B
    `1`
    C
    `-1`
    D
    `2`
  • sin 10^(@)+sin 20^(@) + sin 40 ^(@) + sin 50 = A) sin 15^(@) +sin 75^(@) B) cos 15^(@) + cos75^(@) C) sin 70^(@) + sin 80^(@) D) cos 70^(@) + cos 80^(@)

    A
    `sin 15^(@) +sin 75^(@)`
    B
    `cos 15^(@) + cos75^(@)`
    C
    `sin 70^(@) + sin 80^(@)`
    D
    `cos 70^(@) + cos 80^(@)`
  • Similar Questions

    Explore conceptually related problems

    cos110^(@)+sin20=

    "sin" 10^(@)+"sin" 20^(@)+"sin" 40^(@)+"sin" 50^(@)="sin" 70^(@)+"sin" 80^(@) .

    The value of (sin 20^(@)cos70^(@)+ cos20^(@)sin70^(@))/(sin23^(@)"cosec"23^(@)+cos23^(@)sec23^(@)) is _________.

    Prove that (i) " sin " 80^(@) "cos " 20^(@) - " cos " 80^(@) " sin " 20^(@) =(sqrt(3))/(2) (ii) " cos " 45^(@) " cos " 15^(@) - " sin " 45^(@) " sin " 15^(@) = (1)/(2) (iii) " cos " 75^(@) " cos " 15^(@) + " sin " 75^(@) " sin " 15^(2)= (1)/(2) (iv) " sin " 40^(@) " cos " 20^(@) " + cos " 40^(@) " sin " 20^(@) =(sqrt(3))/(2) (v) " cos " 130^(@) " cos " 40^(@) l + " sin " 130^(@) " sin " 40^(@) =0

    (2cos40^(@)-cos20^(@))/(sin20^(@))

    (2cos40^(@)-cos20^(@))/(sin20^(@))