Home
Class 12
MATHS
|["cos"70^(@), "sin"20^(@)], ["sin"70^(@...

`|["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?`

A

`1`

B

`0`

C

`"cos"50^(@)`

D

`"sin"50^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \cos 70^\circ & \sin 20^\circ \\ \sin 70^\circ & \cos 20^\circ \end{vmatrix} \] we will follow these steps: ### Step 1: Calculate the determinant using the formula The formula for the determinant of a 2x2 matrix \[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \] is given by \( ad - bc \). Here, we have: - \( a = \cos 70^\circ \) - \( b = \sin 20^\circ \) - \( c = \sin 70^\circ \) - \( d = \cos 20^\circ \) So, we can write: \[ D = \cos 70^\circ \cdot \cos 20^\circ - \sin 20^\circ \cdot \sin 70^\circ \] ### Step 2: Apply the cosine addition formula We recognize that the expression we obtained resembles the cosine of a sum. The cosine addition formula states: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] In our case, let \( A = 70^\circ \) and \( B = 20^\circ \). Therefore, we have: \[ D = \cos(70^\circ + 20^\circ) = \cos 90^\circ \] ### Step 3: Evaluate \(\cos 90^\circ\) We know that: \[ \cos 90^\circ = 0 \] ### Final Answer Thus, the value of the determinant is: \[ D = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    RS AGGARWAL|Exercise Exercise 6C|8 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • DIFFERENTIAL EQUATIONS AND THEIR FORMATION

    RS AGGARWAL|Exercise Exercise 18C|16 Videos

Similar Questions

Explore conceptually related problems

cos70^(@)+sin40^(@)=

Find the distance between (a " sin "70^(@),-a" sin "20^(@)) and (-a" sin "70^(@),a" sin "20^(@)) .

cos110^(@)+sin20=

sec70^(@)sin20^(@)+cos20^(@)"cosec"70^(@)=?

"sin" 10^(@)+"sin" 20^(@)+"sin" 40^(@)+"sin" 50^(@)="sin" 70^(@)+"sin" 80^(@) .

The value of (sin 20^(@)cos70^(@)+ cos20^(@)sin70^(@))/(sin23^(@)"cosec"23^(@)+cos23^(@)sec23^(@)) is _________.

Prove that (i) " sin " 80^(@) "cos " 20^(@) - " cos " 80^(@) " sin " 20^(@) =(sqrt(3))/(2) (ii) " cos " 45^(@) " cos " 15^(@) - " sin " 45^(@) " sin " 15^(@) = (1)/(2) (iii) " cos " 75^(@) " cos " 15^(@) + " sin " 75^(@) " sin " 15^(2)= (1)/(2) (iv) " sin " 40^(@) " cos " 20^(@) " + cos " 40^(@) " sin " 20^(@) =(sqrt(3))/(2) (v) " cos " 130^(@) " cos " 40^(@) l + " sin " 130^(@) " sin " 40^(@) =0

(2cos40^(@)-cos20^(@))/(sin20^(@))

(2cos40^(@)-cos20^(@))/(sin20^(@))

sin 10^(@)+sin 20^(@) + sin 40 ^(@) + sin 50 = A) sin 15^(@) +sin 75^(@) B) cos 15^(@) + cos75^(@) C) sin 70^(@) + sin 80^(@) D) cos 70^(@) + cos 80^(@)

RS AGGARWAL-DETERMINANTS-Objective Questions
  1. |["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?

    Text Solution

    |

  2. |["cos"15^(@), "sin"15^(@)], ["sin"15^(@), "cos"15^(@)]|=?

    Text Solution

    |

  3. |["sin"23^(@), -"sin"7^(@)], ["cos"23^(@), "cos"7^(@)]|=?

    Text Solution

    |

  4. Evaluate: |(a+i b, c+i d),(-c+i d, a-i b)|

    Text Solution

    |

  5. Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| ...

    Text Solution

    |

  6. If omega is a complex cube root of unity then the value of the determi...

    Text Solution

    |

  7. If A=[[1^2,2^2,3^2],[2^2,3^2,4^2],[3^2,4^2,5^2]] then |AdjA|=

    Text Solution

    |

  8. |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?

    Text Solution

    |

  9. |[a-b, b-c, c-a], [b-c, c-a, a-b], [c-a, a-b, b-c]|=?

    Text Solution

    |

  10. find |(1, 1+p,1+p+q),(2, 3+2p,1+3p+2q),(3, 6+3p, 1+6 p+3q)|=.

    Text Solution

    |

  11. |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|= is equal to

    Text Solution

    |

  12. Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  13. If a, b, c be distinct positive real numbers then the value of |[a, b,...

    Text Solution

    |

  14. Q. |(x+y,x,x),(15x+4y,4x,2x),(10x +8y,8x,3x)|=x^3

    Text Solution

    |

  15. Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

    Text Solution

    |

  16. |[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|...

    Text Solution

    |

  17. Prove that|[b+c,a,b],[c+a,c,a],[a+b,b,c]|=(a+b+c)(a-c)^2

    Text Solution

    |

  18. |[1, 1, 1], [1, 1+x, 1], [1, 1, 1+y]|=?

    Text Solution

    |

  19. |[bc, b+c, 1], [ca, c+a, 1], [ab, a+b, 1]|=?

    Text Solution

    |

  20. |[b+c, a, a], [b, c+a, b], [c, c, a+b]|=?

    Text Solution

    |