Home
Class 12
MATHS
Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) an...

Let `vec(a)=(2hat(i)+3hat(j)+2 hat(k))` and `vec(b)=(hat(i)+2hat(j)+hat(k))`.
Find the projection of (i) `vec(a)` on `vec(b)` and (ii) `vec(b)` on `vec(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the projections of the vectors \(\vec{a}\) and \(\vec{b}\), we will use the formula for the projection of one vector onto another. The projection of vector \(\vec{a}\) onto vector \(\vec{b}\) is given by: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] And the projection of vector \(\vec{b}\) onto vector \(\vec{a}\) is given by: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] ### Step 1: Calculate \(\vec{a} \cdot \vec{b}\) Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] Now, calculate the dot product \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = (2)(1) + (3)(2) + (2)(1) = 2 + 6 + 2 = 10 \] ### Step 2: Calculate \(|\vec{b}|^2\) Now, calculate the magnitude of \(\vec{b}\): \[ |\vec{b}|^2 = (1)^2 + (2)^2 + (1)^2 = 1 + 4 + 1 = 6 \] ### Step 3: Calculate the projection of \(\vec{a}\) on \(\vec{b}\) Using the projection formula: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} = \frac{10}{6} \vec{b} = \frac{5}{3} \vec{b} \] Substituting \(\vec{b}\): \[ \text{proj}_{\vec{b}} \vec{a} = \frac{5}{3}(\hat{i} + 2\hat{j} + \hat{k}) = \frac{5}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{5}{3}\hat{k} \] ### Step 4: Calculate \(|\vec{a}|^2\) Now, calculate the magnitude of \(\vec{a}\): \[ |\vec{a}|^2 = (2)^2 + (3)^2 + (2)^2 = 4 + 9 + 4 = 17 \] ### Step 5: Calculate the projection of \(\vec{b}\) on \(\vec{a}\) Using the projection formula: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} = \frac{10}{17} \vec{a} \] Substituting \(\vec{a}\): \[ \text{proj}_{\vec{a}} \vec{b} = \frac{10}{17}(2\hat{i} + 3\hat{j} + 2\hat{k}) = \frac{20}{17}\hat{i} + \frac{30}{17}\hat{j} + \frac{20}{17}\hat{k} \] ### Final Answers 1. The projection of \(\vec{a}\) on \(\vec{b}\) is: \[ \frac{5}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{5}{3}\hat{k} \] 2. The projection of \(\vec{b}\) on \(\vec{a}\) is: \[ \frac{20}{17}\hat{i} + \frac{30}{17}\hat{j} + \frac{20}{17}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a) = 2hat(i) + 3hat(j) - 6hat(k) and vec(b) = 12 hat(j) + 5 hat(k) . then (projection of vec(a) on vec(b)//("projection of b on a") )

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

RS AGGARWAL-SCALAR, OR DOT, PRODUCT OF VECTORS-Exercise 23
  1. Show that the vectors vec a=1/7(2 hat i+3 hat j+6 hat k), vec b=1/7(3...

    Text Solution

    |

  2. Let vec(A)=4hat(i)+5hat(j)-hat(k), vec(b)=hat(i)-4hat(j)+5hat(k) and v...

    Text Solution

    |

  3. Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k...

    Text Solution

    |

  4. Find the projection of (8hat(i)+hat(j)) in the direction of (hat(i)+2h...

    Text Solution

    |

  5. Write the projection of vector hat i+ hat j+ hat k along the vector ...

    Text Solution

    |

  6. (i) Find the projection of vec(a) on vec(b) if vec(a).vec(b)=8 and vec...

    Text Solution

    |

  7. Find the angle between the vectors vec(a) and vec(b), when (i) vec(a...

    Text Solution

    |

  8. If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k))...

    Text Solution

    |

  9. if veca is a unit vector and (vecx-veca).(vecx+veca)=8 then |vecx|

    Text Solution

    |

  10. Find the angles which the vector vec(a)=3 hat(i)-6hat(j)+2hat(k) makes...

    Text Solution

    |

  11. Show that the vector hat i+ hat j+ hat k is equally inclined with the...

    Text Solution

    |

  12. Find a vector vec a of magnitude 5sqrt(2) making an angle pi/4 with x-...

    Text Solution

    |

  13. Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)), if vec(a)=...

    Text Solution

    |

  14. Express the vector vec(a)=(6hat(i)-3hat(j)-6hat(k)) as sum of two vect...

    Text Solution

    |

  15. Prove that ( -> a+ -> b)dot( -> a+ -> c)| -> a|^2+| -> b|^2 , if and o...

    Text Solution

    |

  16. If vec a+ vec b+ vec c=0,| vec a|=3,| vec b|=5,| vec c|=7, then find ...

    Text Solution

    |

  17. Find the angle between vec(a) and vec(b), when (i) |vec(a)|=2, |vec(...

    Text Solution

    |

  18. Find | -> a- -> b|, if two vector -> a and -> b are such that | -> a...

    Text Solution

    |

  19. Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot( vec a- vec b)=...

    Text Solution

    |

  20. If hat a\ a n d\ hat b are unit vectors inclined at an angle theta t...

    Text Solution

    |