Home
Class 12
MATHS
Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) an...

Let `vec(a)=(2hat(i)+3hat(j)+2 hat(k))` and `vec(b)=(hat(i)+2hat(j)+hat(k))`.
Find the projection of (i) `vec(a)` on `vec(b)` and (ii) `vec(b)` on `vec(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the projections of the vectors \(\vec{a}\) and \(\vec{b}\), we will use the formula for the projection of one vector onto another. The projection of vector \(\vec{a}\) onto vector \(\vec{b}\) is given by: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] And the projection of vector \(\vec{b}\) onto vector \(\vec{a}\) is given by: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] ### Step 1: Calculate \(\vec{a} \cdot \vec{b}\) Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] Now, calculate the dot product \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = (2)(1) + (3)(2) + (2)(1) = 2 + 6 + 2 = 10 \] ### Step 2: Calculate \(|\vec{b}|^2\) Now, calculate the magnitude of \(\vec{b}\): \[ |\vec{b}|^2 = (1)^2 + (2)^2 + (1)^2 = 1 + 4 + 1 = 6 \] ### Step 3: Calculate the projection of \(\vec{a}\) on \(\vec{b}\) Using the projection formula: \[ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} = \frac{10}{6} \vec{b} = \frac{5}{3} \vec{b} \] Substituting \(\vec{b}\): \[ \text{proj}_{\vec{b}} \vec{a} = \frac{5}{3}(\hat{i} + 2\hat{j} + \hat{k}) = \frac{5}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{5}{3}\hat{k} \] ### Step 4: Calculate \(|\vec{a}|^2\) Now, calculate the magnitude of \(\vec{a}\): \[ |\vec{a}|^2 = (2)^2 + (3)^2 + (2)^2 = 4 + 9 + 4 = 17 \] ### Step 5: Calculate the projection of \(\vec{b}\) on \(\vec{a}\) Using the projection formula: \[ \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} = \frac{10}{17} \vec{a} \] Substituting \(\vec{a}\): \[ \text{proj}_{\vec{a}} \vec{b} = \frac{10}{17}(2\hat{i} + 3\hat{j} + 2\hat{k}) = \frac{20}{17}\hat{i} + \frac{30}{17}\hat{j} + \frac{20}{17}\hat{k} \] ### Final Answers 1. The projection of \(\vec{a}\) on \(\vec{b}\) is: \[ \frac{5}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{5}{3}\hat{k} \] 2. The projection of \(\vec{b}\) on \(\vec{a}\) is: \[ \frac{20}{17}\hat{i} + \frac{30}{17}\hat{j} + \frac{20}{17}\hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

Knowledge Check

  • If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

    A
    `3hat(i) - 3hat(j) + hat(k)`
    B
    `(9(5hat(i) - 3hat(j) + hat(k))/(7))`
    C
    `((5hat(i) - 3hat(j) - hat(k)))/(35)`
    D
    `9(5hat(i) - 3hat(j) + hat(k))`
  • If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

    A
    `sqrt((3)/(2))`
    B
    `(3)/(sqrt(2))`
    C
    `(1)/(sqrt(2))`
    D
    `(3sqrt(6))/(2)`
  • Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

    A
    `5(34hat(i)-5hat(j)+3hat(k))`
    B
    `7(34hat(i)-5hat(j)+3hat(k))`
    C
    `7(30hat(i)-5hat(j)+7hat(k))`
    D
    `5(30hat(i) -5hat(j)+7hat(k))`
  • Similar Questions

    Explore conceptually related problems

    If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

    If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

    If vec(a) = 2hat(i) + 3hat(j) - 6hat(k) and vec(b) = 12 hat(j) + 5 hat(k) . then (projection of vec(a) on vec(b)//("projection of b on a") )

    If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

    If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?