Home
Class 11
MATHS
Evaluate: " "(i)" "i^(19)" "(ii)"...

Evaluate: `" "(i)" "i^(19)" "(ii)" "i^(62)" "(iii)" "i^(373)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the powers of the imaginary unit \( i \), we can use the fact that \( i^4 = 1 \). This means that the powers of \( i \) repeat every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) To find \( i^n \) for any integer \( n \), we can reduce \( n \) modulo 4. ### Step-by-Step Solution: **(i) Evaluate \( i^{19} \)** 1. **Find \( 19 \mod 4 \)**: \[ 19 \div 4 = 4 \quad \text{(remainder 3)} \] Therefore, \( 19 \mod 4 = 3 \). 2. **Use the result**: \[ i^{19} = i^3 \] 3. **Determine \( i^3 \)**: \[ i^3 = -i \] Thus, \( i^{19} = -i \). --- **(ii) Evaluate \( i^{62} \)** 1. **Find \( 62 \mod 4 \)**: \[ 62 \div 4 = 15 \quad \text{(remainder 2)} \] Therefore, \( 62 \mod 4 = 2 \). 2. **Use the result**: \[ i^{62} = i^2 \] 3. **Determine \( i^2 \)**: \[ i^2 = -1 \] Thus, \( i^{62} = -1 \). --- **(iii) Evaluate \( i^{373} \)** 1. **Find \( 373 \mod 4 \)**: \[ 373 \div 4 = 93 \quad \text{(remainder 1)} \] Therefore, \( 373 \mod 4 = 1 \). 2. **Use the result**: \[ i^{373} = i^1 \] 3. **Determine \( i^1 \)**: \[ i^1 = i \] Thus, \( i^{373} = i \). ### Final Answers: - \( i^{19} = -i \) - \( i^{62} = -1 \) - \( i^{373} = i \) ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: " "(i)" "i^(-50)" "(ii)" "i^(-9)" "(iii)" "i^(-131)

Evaluate (i) (ii) (ii)

Evaluate: " "(i)" "(i^(41)+(1)/(i^(71)))" "(ii)" "(i^(53)+(1)/(i^(53)))

Evaluate : (i) i^(23)" "(ii) i^(998)" "(iii)i^(-998)" "(iv) i^(-71) (v) (sqrt(-1))^(91)" "(vi) (i^(37)xx i^(-61))" "(vii) i^(-1)

Evaluate the followings : (i) i^(23) (ii) i^(-97)

Evaluate: "(i) "^(10)P_(4) " (ii) "^(62)P_(3)" (iii) "^(6)P_(6) " (iv) "^(9)P_(0)

Evaluate the following: i^(19)

Evaluate the following (i) i^(9) (ii) i^(342) (iii) i^(998) (iv) i^(-63) (v) (i^(3)+(1)/(i^(3)))

Evaluate the following : (i) i^(7) (ii) i^(51) (iii) (1)/(i) (iv) i^(-71) (v) (i^(37)+(1)/(i^(67)))