Home
Class 11
MATHS
If sin x=(sqrt(5))/(3) " and " 0 lt x l...

If sin `x=(sqrt(5))/(3) " and " 0 lt x lt .(pi)/(2)` find the values of
`(i) " sin " 2x " ""(ii) cos 2x "" ""(iii) tan 2x "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's follow the instructions given in the video transcript. ### Given: - \( \sin x = \frac{\sqrt{5}}{3} \) - \( 0 < x < \frac{\pi}{2} \) ### Step 1: Find \( \cos x \) Using the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] Substituting the value of \( \sin x \): \[ \left(\frac{\sqrt{5}}{3}\right)^2 + \cos^2 x = 1 \] \[ \frac{5}{9} + \cos^2 x = 1 \] \[ \cos^2 x = 1 - \frac{5}{9} = \frac{9}{9} - \frac{5}{9} = \frac{4}{9} \] Taking the square root (since \( x \) is in the first quadrant where cosine is positive): \[ \cos x = \frac{2}{3} \] ### Step 2: Find \( \sin 2x \) Using the double angle formula: \[ \sin 2x = 2 \sin x \cos x \] Substituting the values of \( \sin x \) and \( \cos x \): \[ \sin 2x = 2 \left(\frac{\sqrt{5}}{3}\right) \left(\frac{2}{3}\right) \] \[ = \frac{4\sqrt{5}}{9} \] ### Step 3: Find \( \cos 2x \) Using the double angle formula: \[ \cos 2x = \cos^2 x - \sin^2 x \] Substituting the values of \( \cos x \) and \( \sin x \): \[ \cos 2x = \left(\frac{2}{3}\right)^2 - \left(\frac{\sqrt{5}}{3}\right)^2 \] \[ = \frac{4}{9} - \frac{5}{9} \] \[ = \frac{4 - 5}{9} = -\frac{1}{9} \] ### Step 4: Find \( \tan 2x \) Using the double angle formula: \[ \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \] First, we need to find \( \tan x \): \[ \tan x = \frac{\sin x}{\cos x} = \frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}} = \frac{\sqrt{5}}{2} \] Now substituting into the formula for \( \tan 2x \): \[ \tan 2x = \frac{2 \left(\frac{\sqrt{5}}{2}\right)}{1 - \left(\frac{\sqrt{5}}{2}\right)^2} \] Calculating \( \tan^2 x \): \[ \tan^2 x = \left(\frac{\sqrt{5}}{2}\right)^2 = \frac{5}{4} \] Now substituting: \[ \tan 2x = \frac{2 \cdot \frac{\sqrt{5}}{2}}{1 - \frac{5}{4}} = \frac{\sqrt{5}}{1 - \frac{5}{4}} = \frac{\sqrt{5}}{\frac{-1}{4}} = -4\sqrt{5} \] ### Final Answers: (i) \( \sin 2x = \frac{4\sqrt{5}}{9} \) (ii) \( \cos 2x = -\frac{1}{9} \) (iii) \( \tan 2x = -4\sqrt{5} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos x=(-3)/(5) " and " pi lt x lt .(3pi)/(2) find the value of (i) "sin 2x "" ""(ii) cos 2x "" ""(iii) tan 2x "

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

If " sin " x =- (1)/(2) " and " pi lt x lt .(3pi)/(2) find the value of (i) " sin "2x , (ii) " cos " 2x (iii) " tan " 2x

if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

If sin x=(sqrt(5))/(3) "and " .(pi)/(3) lt x lt pi find the values of (i) " sin " (x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)

If tan x=(-4)/(3) " and " .(pi)/(2) lt x lt pi find the values of (i) " sin ".(x)/(2) " ""(ii) cos " .(x)/(2) " ""(iii) tan ".(x)/(2)

if cos x=(3)/(5) " and cos " y=(-24)/(25) " where " .(3pi)/(2) lt x lt 2 pi " and " pi lt y lt .(3pi)/(2) find the values of (i) " sin (x+y) "" ""(ii) cos (x-y) "" ""(iii) tan (x+y) "

If sin x=(12)/(13) "and sin " y= (4)/(5) " where " (pi)/(2) lt x lt pi " and " 0 lt y lt .(pi)/(2) find the values of (i) " sin " (x+y) " "(ii) " cos " (x+y) " "(iii) " tan " (x-y)

If tan x=(-3)/(4) " and" (3pi)/(2) lt x lt 2 pi find the value of "(i) " sin 2x , "(ii) " cos 2x , "(iii) " tan 2x

If tan x=(-5)/(12) " and " (pi)/(2) lt x lt pi find the value of cos 2x