Home
Class 12
MATHS
Find the value of : (i) (hat(i) xxhat(j...

Find the value of :
(i) `(hat(i) xxhat(j))*hat (k) + hat(i)* hat(j)` (ii) `(hat(k) xx hat(j))* hat(i) +hat(j)* hat(k)`
`hat(i) xx (hat(j) + hat(k) )+hat(j) xx(hat(k) +hat(i))+ hat(k) xx (hat(i)+hat(j))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will use the properties of the cross product and dot product of the unit vectors \( \hat{i}, \hat{j}, \hat{k} \). ### (i) Find the value of \( (\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j} \) 1. **Calculate \( \hat{i} \times \hat{j} \)**: - By the right-hand rule and the properties of cross products, we know: \[ \hat{i} \times \hat{j} = \hat{k} \] 2. **Calculate \( (\hat{i} \times \hat{j}) \cdot \hat{k} \)**: - Substitute \( \hat{k} \) from the previous step: \[ \hat{k} \cdot \hat{k} = 1 \] 3. **Calculate \( \hat{i} \cdot \hat{j} \)**: - The dot product of two orthogonal unit vectors is: \[ \hat{i} \cdot \hat{j} = 0 \] 4. **Combine the results**: - Now, add the results from steps 2 and 3: \[ 1 + 0 = 1 \] Thus, the value for part (i) is **1**. ### (ii) Find the value of \( (\hat{k} \times \hat{j}) \cdot \hat{i} + \hat{j} \cdot \hat{k} \) 1. **Calculate \( \hat{k} \times \hat{j} \)**: - Using the right-hand rule: \[ \hat{k} \times \hat{j} = -\hat{i} \] 2. **Calculate \( (\hat{k} \times \hat{j}) \cdot \hat{i} \)**: - Substitute \( -\hat{i} \): \[ -\hat{i} \cdot \hat{i} = -1 \] 3. **Calculate \( \hat{j} \cdot \hat{k} \)**: - The dot product of two orthogonal unit vectors is: \[ \hat{j} \cdot \hat{k} = 0 \] 4. **Combine the results**: - Now, add the results from steps 2 and 3: \[ -1 + 0 = -1 \] Thus, the value for part (ii) is **-1**. ### (iii) Find the value of \( \hat{i} \times (\hat{j} + \hat{k}) + \hat{j} \times (\hat{k} + \hat{i}) + \hat{k} \times (\hat{i} + \hat{j}) \) 1. **Calculate \( \hat{i} \times (\hat{j} + \hat{k}) \)**: - Distributing the cross product: \[ \hat{i} \times \hat{j} + \hat{i} \times \hat{k} = \hat{k} + (-\hat{j}) = \hat{k} - \hat{j} \] 2. **Calculate \( \hat{j} \times (\hat{k} + \hat{i}) \)**: - Distributing the cross product: \[ \hat{j} \times \hat{k} + \hat{j} \times \hat{i} = \hat{i} + (-\hat{k}) = \hat{i} - \hat{k} \] 3. **Calculate \( \hat{k} \times (\hat{i} + \hat{j}) \)**: - Distributing the cross product: \[ \hat{k} \times \hat{i} + \hat{k} \times \hat{j} = (-\hat{j}) + (-\hat{i}) = -\hat{j} - \hat{i} \] 4. **Combine all results**: - Now, add the results from steps 1, 2, and 3: \[ (\hat{k} - \hat{j}) + (\hat{i} - \hat{k}) + (-\hat{j} - \hat{i}) \] - Simplifying: \[ \hat{k} - \hat{j} + \hat{i} - \hat{k} - \hat{j} - \hat{i} = -2\hat{j} \] Thus, the value for part (iii) is **-2\hat{j}**. ### Summary of Results: - (i) **1** - (ii) **-1** - (iii) **-2\hat{j}**

To solve the given problems step by step, we will use the properties of the cross product and dot product of the unit vectors \( \hat{i}, \hat{j}, \hat{k} \). ### (i) Find the value of \( (\hat{i} \times \hat{j}) \cdot \hat{k} + \hat{i} \cdot \hat{j} \) 1. **Calculate \( \hat{i} \times \hat{j} \)**: - By the right-hand rule and the properties of cross products, we know: \[ \hat{i} \times \hat{j} = \hat{k} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    RS AGGARWAL|Exercise Exercise 9C|9 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos

Similar Questions

Explore conceptually related problems

Find the value of: (hat i times hat j).hat k + hat i.hat j

(hat i xxhat j)*hat k+(hat j+hat k)*hat j

Knowledge Check

  • hat(i)*(hat(j)timeshat(k))+hat(j)*(hat(k)timeshat(i))+hat(k)*(hat(i)timeshat(j))=

    A
    `0`
    B
    `1`
    C
    `2`
    D
    `3`
  • (hat(i) + hat(j) - hat(k)).(hat(i) - hat(j) + hat(k)) =_________

    A
    `hat(i) - hat(j) - hat(k)`
    B
    `1`
    C
    -1
    D
    `-hat(j) + hat(k)`
  • Similar Questions

    Explore conceptually related problems

    (hat(k)xx hat(i)).hat(j)+hat(i).hat(k) …………..

    Find the value of hat I .( hat j xx hat k) .

    Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+hat(k).(hat(i)xxhat(j)) .

    Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k) .

    Write the value of (hat i xxhat j)dot hat k+(hat j xxhat k)hat i

    Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .