Home
Class 12
MATHS
int(1)^(4)xsqrt(x)dx=?...

`int_(1)^(4)xsqrt(x)dx=?`

A

`12.8`

B

`12.4`

C

`7`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{4} x \sqrt{x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand The integrand \( x \sqrt{x} \) can be rewritten using exponents. We know that \( \sqrt{x} = x^{1/2} \). Therefore, we can express the integrand as: \[ x \sqrt{x} = x \cdot x^{1/2} = x^{1 + 1/2} = x^{3/2} \] ### Step 2: Set up the integral Now, we can set up the integral with the new expression: \[ \int_{1}^{4} x \sqrt{x} \, dx = \int_{1}^{4} x^{3/2} \, dx \] ### Step 3: Apply the power rule for integration To integrate \( x^{3/2} \), we use the power rule for integration, which states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] For our case, \( n = \frac{3}{2} \): \[ \int x^{3/2} \, dx = \frac{x^{3/2 + 1}}{3/2 + 1} = \frac{x^{5/2}}{5/2} = \frac{2}{5} x^{5/2} \] ### Step 4: Evaluate the definite integral Now we need to evaluate the definite integral from 1 to 4: \[ \int_{1}^{4} x^{3/2} \, dx = \left[ \frac{2}{5} x^{5/2} \right]_{1}^{4} \] Calculating the upper limit: \[ \frac{2}{5} (4^{5/2}) = \frac{2}{5} (32) = \frac{64}{5} \] Calculating the lower limit: \[ \frac{2}{5} (1^{5/2}) = \frac{2}{5} (1) = \frac{2}{5} \] ### Step 5: Subtract the lower limit from the upper limit Now we subtract the lower limit from the upper limit: \[ \int_{1}^{4} x^{3/2} \, dx = \frac{64}{5} - \frac{2}{5} = \frac{64 - 2}{5} = \frac{62}{5} \] ### Final Answer Thus, the value of the integral \( \int_{1}^{4} x \sqrt{x} \, dx \) is: \[ \frac{62}{5} \]

To solve the integral \( \int_{1}^{4} x \sqrt{x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand The integrand \( x \sqrt{x} \) can be rewritten using exponents. We know that \( \sqrt{x} = x^{1/2} \). Therefore, we can express the integrand as: \[ x \sqrt{x} = x \cdot x^{1/2} = x^{1 + 1/2} = x^{3/2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16D|17 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(4)x sqrt(x)dx = ?

int_(0)^(2)xsqrt(2+x)dx

Knowledge Check

  • int(1)/(xsqrt(x-1))dx=

    A
    `2cot^(-1)sqrt(x-1)+c`
    B
    `2tan^(-1)sqrt(x-1)+c`
    C
    `sec^(-1)x+c`
    D
    `sec^(-1)(sqrtx)+c`
  • int (1)/(xsqrt(x))dx

    A
    `-(1/2)x^(-1//2) +c`
    B
    `-2x^(-1//2) +c`
    C
    `-1x^(-1//2) +c`
    D
    `-1/3.x^(-1//2) +c`
  • The value of int_(0)^(3) xsqrt(1+x)dx , is

    A
    `(9)/(2)`
    B
    `(27)/(4)`
    C
    `(126)/(15)`
    D
    `(116)/(15)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(2) xsqrt(2-x)dx

    int_(1)^(4)(x^(2)-x)dx

    int_(0)^1 (xsqrt(1-x))dx

    Evaluate : int_( a ) ^4 xsqrt(x) dx = ?

    y=int_(1)^(x)x.sqrt(ln t)dt. Find the value of (d^(2)y)/(dx^(2)) at x=e