Home
Class 12
MATHS
Find the area of the parallelogram whose...

Find the area of the parallelogram whose diagonals are represented by the vectors
(i)`vec(d)_(1)= 3 hat(i) + hat(j) - 2 hat(k)` and `vec(d)_(2) = hat(i) - 3 hat(j) +4 hat(k)`
(ii) `vec(d)_(1)= 2 hat(i) - hat(j) + hat(k)` and `vec(d)_(2)= 3 hat(i) + 4 hat(j)-hat(k)`
(iii) `vec(d)_(1)= hat(i)- 3 hat(j) + 2 hat(k)` and `vec(d)_(2)= -hat(i)+2 hat(j).`

Text Solution

Verified by Experts

The correct Answer is:
(i) `5 sqrt(3)` sq units (ii) `1/2 sqrt(155)` sq units (iii)`1/2sqrt(21)` sq units

Area of a ||gm`=1/2|vec(d)_(1) xxvec(d)_(2)|.`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    RS AGGARWAL|Exercise Exercise 9C|9 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos

Similar Questions

Explore conceptually related problems

Find the area of the parallelogram whose diagonals are represented by the vectors vec(d)_(1)=(2 hat(i) - hat(j)+ hat(k)) and vec(d)_(2) = (3 hat(i) + 4 hat(j) - hat(k)).

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

Knowledge Check

  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • Similar Questions

    Explore conceptually related problems

    Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

    Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

    Find the unit vectors perpendicular to both vec(a) and vec(b) when (i) vec(a) = 3 hat(i)+hat(j)-2 hat(k) and vec(b)= 2 hat(i) + 3 hat(j) - hat(k) (ii) vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b)= hat(i) +2hat(j) - hat(k) (iii) vec(a) = hat(i) + 3 hat(j) - 2 hat (k) and vec(b)= -hat(i) + 3 hat(k) (iv) vec(a) = 4 hat(i) + 2 hat(j)-hat(k) and vec(b) = hat(i) + 4 hat(j) - hat(k)

    Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

    Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

    Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

    Find the volume of the parallelepiped whose coterminous edges are represented by the vectors (i) vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k), vec(c)=hat(i)+2hat(j)-hat(k) (ii) vec(a)=-3hat(i)+7hat(j)+5hat(k), vec(b)=-5hat(i)+7hat(j)-3hat(k), vec(c)= 7 hat(i)-5hat(j)-3hat(k) (iii) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=2hat(i)+hat(j)-hat(k), vec(c)=hat(j)+hat(k) (iv) vec(a)=6hat(i), vec(b)=2hat(j), vec(c)=5hat(i)