Home
Class 12
MATHS
All x satisfying the inequnality (cot^...

All x satisfying the inequnality `(cot^(-1) x)^(2) - 7 (cot^(-1) x) + 10 gt0` lie in the inteval

A

`(-oo, cot5) nn(cot2,oo)`

B

`(cot5,cot4)`

C

`(cot2,oo)`

D

`(-oo,cot5),(cot4,cot2)`

Text Solution

Verified by Experts

The correct Answer is:
c

Given, `(cot^(-1)x)^(2)-7(cot^(-1)x)+10gt0`
`implies(cot^(-1)x-2)(cot^(-1)x-5)gt0" "("by factorisation")`
`impliescot ^(-1)xlt2" or "cot^(-1)xgt5`
By wavy curve method
`:." "cot^(-1)x in(-oo,2)uu(k,oo)`
`cot^(-1)x in(0,2)" "[because"Range of "cot^(-1)" is "(0,pi)]`
`:." "x in(cot2,oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Solve tan^(-1) x gt cot^(-1) x

Is cot^(-1) (-x) = pi - cot^(-1) x , x in R

Solve for x if (cot^(-1)x)^(2)-3(cot^(-1)x)+2>0

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

The solution set for [cot^(-1)x]^(2)-6[cot^(-1)x]+9<=0 is

Find the domain of cot x+cot^(-1)x

A solution of the equation cot^(-1)2=cot^(-1)x+cot^(-1)(10-x)" where " 1 lt x lt 9 is :