Home
Class 12
MATHS
If P = [{: (2 , -2, -4),(-1, 3, 4),(1 , ...

If P = `[{: (2 , -2, -4),(-1, 3, 4),(1 , -2, -3):}]`, then `P^(5)` equals

A

P

B

2P

C

`-P`

D

`-2P`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P^5 \) for the matrix \[ P = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] we can use the characteristic polynomial of the matrix \( P \). The characteristic polynomial can be derived from the determinant of \( P - \lambda I \), where \( I \) is the identity matrix. ### Step 1: Find the characteristic polynomial 1. **Set up the matrix \( P - \lambda I \)**: \[ P - \lambda I = \begin{pmatrix} 2 - \lambda & -2 & -4 \\ -1 & 3 - \lambda & 4 \\ 1 & -2 & -3 - \lambda \end{pmatrix} \] 2. **Calculate the determinant**: \[ \text{det}(P - \lambda I) = (2 - \lambda) \begin{vmatrix} 3 - \lambda & 4 \\ -2 & -3 - \lambda \end{vmatrix} + 2 \begin{vmatrix} -1 & 4 \\ 1 & -3 - \lambda \end{vmatrix} - 4 \begin{vmatrix} -1 & 3 - \lambda \\ 1 & -2 \end{vmatrix} \] 3. **Calculate the 2x2 determinants**: \[ \begin{vmatrix} 3 - \lambda & 4 \\ -2 & -3 - \lambda \end{vmatrix} = (3 - \lambda)(-3 - \lambda) - (-2)(4) = \lambda^2 - 9 + 8 = \lambda^2 - 1 \] \[ \begin{vmatrix} -1 & 4 \\ 1 & -3 - \lambda \end{vmatrix} = -1(-3 - \lambda) - 4(1) = 3 + \lambda - 4 = \lambda - 1 \] \[ \begin{vmatrix} -1 & 3 - \lambda \\ 1 & -2 \end{vmatrix} = -1(-2) - (3 - \lambda)(1) = 2 - (3 - \lambda) = \lambda - 1 \] 4. **Combine the results**: \[ \text{det}(P - \lambda I) = (2 - \lambda)(\lambda^2 - 1) + 2(\lambda - 1) - 4(\lambda - 1) \] \[ = (2 - \lambda)(\lambda^2 - 1) + 2(\lambda - 1) - 4(\lambda - 1) \] \[ = (2 - \lambda)(\lambda^2 - 1) - 2(\lambda - 1) \] 5. **Expand and simplify**: \[ = (2\lambda^2 - 2 - \lambda^3 + \lambda) - 2\lambda + 2 = -\lambda^3 + 2\lambda^2 - \lambda + 0 \] Thus, the characteristic polynomial is: \[ -\lambda^3 + 2\lambda^2 - \lambda = 0 \] ### Step 2: Use the characteristic polynomial to express \( P^3 \) From the characteristic polynomial, we can express \( P^3 \) in terms of \( P^2 \) and \( P \): \[ P^3 = 2P^2 - P \] ### Step 3: Calculate \( P^4 \) and \( P^5 \) 1. **Calculate \( P^4 \)**: \[ P^4 = P \cdot P^3 = P(2P^2 - P) = 2P^3 - P^2 \] 2. **Calculate \( P^5 \)**: \[ P^5 = P \cdot P^4 = P(2P^3 - P^2) = 2P^4 - P^3 \] ### Final Result Thus, we can express \( P^5 \) in terms of lower powers of \( P \) using the characteristic polynomial. The exact matrix calculation can be done by substituting the values of \( P \) into these equations.
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

" .If "P=[[2,-2,-4],[-1,3,4],[1,-2,-3]]" then show that,"P^(2)=P

" 1.If "P=[[2,-2,-4],[-1,3,4],[1,-2,-3]]" then show that,"P^(2)=P" ."

If |{:(2, -3), (p-4, 2p-1):}| = -6 , then p =____.

The following are the steps in finding the matrix B, if B + ({:(2, 3), (4, 5):}) = ({:(5, 4), (3, 2):}) . Arrange them in sequential order. (A) therefore ({:(p, q), (r, s):}) + ({:(2, 3), (4, 5):}) = ({:(5, 4), (3, 2):}) (B) Let B = ({:(p, q), (r, s):}) (C) ({:(p+2, q+3), (r+4, s+5):}) = ({:(5, 4), (3, 2):}) (D) P + 2 = 5, q + 3 = 4, r+ 4 = 3, s + 5 = 2 rArr p = 3, q = 1, r = -1, s = -3 (E) therefore B = ({:(3, 1), (-1, -3):})

If P(A) = (4)/(5), P(B) = (2)/(5), P(A nn B) = (1)/(2) then P(A uu B) is equal to .

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to