Home
Class 12
MATHS
Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}...

Let I = `[{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] ` . Then the matrix `p^(3) + 2P^(2)` is equal to

A

P

B

I-P

C

2I + P

D

2I - P

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P^3 + 2P^2 \) for the given matrix \( P \). ### Step 1: Define the matrices We have: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] and \[ P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] ### Step 2: Calculate \( P^2 \) To find \( P^2 \), we multiply \( P \) by itself: \[ P^2 = P \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] Calculating the product: \[ P^2 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot (-1) + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot 0 + 0 \cdot (-2) \\ 0 \cdot 1 + (-1) \cdot 0 + 0 \cdot 0 & 0 \cdot 0 + (-1) \cdot (-1) + 0 \cdot 0 & 0 \cdot 0 + (-1) \cdot 0 + 0 \cdot (-2) \\ 0 \cdot 1 + 0 \cdot 0 + (-2) \cdot 0 & 0 \cdot 0 + 0 \cdot (-1) + (-2) \cdot 0 & 0 \cdot 0 + 0 \cdot 0 + (-2) \cdot (-2) \end{pmatrix} \] \[ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \] ### Step 3: Calculate \( P^3 \) Next, we calculate \( P^3 \) by multiplying \( P^2 \) by \( P \): \[ P^3 = P^2 \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] Calculating the product: \[ P^3 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot (-1) + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot 0 + 4 \cdot (-2) \\ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 & 0 \cdot 0 + 1 \cdot (-1) + 0 \cdot 0 & 0 \cdot 0 + 1 \cdot 0 + 0 \cdot (-2) \\ 0 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 & 0 \cdot 0 + 0 \cdot (-1) + 4 \cdot 0 & 0 \cdot 0 + 0 \cdot 0 + 4 \cdot (-2) \end{pmatrix} \] \[ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8 \end{pmatrix} \] ### Step 4: Calculate \( 2P^2 \) Now we calculate \( 2P^2 \): \[ 2P^2 = 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix} \] ### Step 5: Calculate \( P^3 + 2P^2 \) Finally, we add \( P^3 \) and \( 2P^2 \): \[ P^3 + 2P^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix} \] \[ = \begin{pmatrix} 1 + 2 & 0 & 0 \\ 0 & -1 + 2 & 0 \\ 0 & 0 & -8 + 8 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Final Answer Thus, the matrix \( P^3 + 2P^2 \) is: \[ \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

The matrix [(1,0,0),(0,2,0),(0,0,4)] is a

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and AB=I_3 , then x + y equals

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

Let A = ({:(1,0,0),(0,1,1),(1,0,0):}) . Then A^(2025) - A^(2020) is equal to :

If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0),(0,0,1):}] then what is the value of x?

If [{:(1,2,3):}] [{:(1,0,0),(0,1,0),(0,0,1):}][{:(1),(2),(3):}]=A, then the order of matrix A is :

MTG-WBJEE-MATRICES AND DETERMINANTS -WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )
  1. Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1...

    Text Solution

    |

  2. The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2a...

    Text Solution

    |

  3. Let Q = [{: (cos ""(pi)/(4) , - sin""(pi)/(4)),(sin""(pi)/(4), cos""(p...

    Text Solution

    |

  4. If n ge 2 is an integer A= [(cos (2pi/n), sin (2pi/n),0),(-sin (2pi/n)...

    Text Solution

    |

  5. Let I denote the 3xx3 identity matrix and P be a matrix obtained by re...

    Text Solution

    |

  6. Let f(x) = 2x^(2) + 5x + 1 . If we write f(x) as f(x) = a (x + 1) (x ...

    Text Solution

    |

  7. The value of lambda, such that the following system of equations has n...

    Text Solution

    |

  8. If f(x) = |{:(1, x, x +1),(2x , x (x - 1), (x + 1)x),(3x(x - 1), x (x ...

    Text Solution

    |

  9. If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

    Text Solution

    |

  10. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  11. If omegais an imaginary cube root of unity, then the value of the det...

    Text Solution

    |

  12. If x , y and z be greater than 1, then the value of |{:(1, log(x)y, l...

    Text Solution

    |

  13. If A is a 3x3 matrix and B is its adjoint matrix the determinant of B ...

    Text Solution

    |

  14. The linear system of equations 8x-3y-5z=0 ,5x-8y+3z=0 and 3x+5y-8z=0

    Text Solution

    |

  15. Let A = [{:(x + 2, 3x),(3,x + 2):}], B = [{:(x , 0),(5 , x + 2):}]. Th...

    Text Solution

    |

  16. The value of det A, where A=((1,costheta,0),(-costheta,1,costheta),(-1...

    Text Solution

    |

  17. If |{:(- 1, 7 , 0),(2, 1, -3),(3, 4, 1):}| = A, then |{:(13, -11 , 5),...

    Text Solution

    |

  18. If a^(r) = (cos 2 r pi + I sin 2 r pi )^(1//9) , then the value of |{:...

    Text Solution

    |

  19. If Sr = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| the...

    Text Solution

    |

  20. If the following three linear equations have a non-trivial solution , ...

    Text Solution

    |