Home
Class 12
MATHS
Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}...

Let I = `[{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] ` . Then the matrix `p^(3) + 2P^(2)` is equal to

A

P

B

I-P

C

2I + P

D

2I - P

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( P^3 + 2P^2 \) for the given matrix \( P \). ### Step 1: Define the matrices We have: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] and \[ P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] ### Step 2: Calculate \( P^2 \) To find \( P^2 \), we multiply \( P \) by itself: \[ P^2 = P \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] Calculating the product: \[ P^2 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot (-1) + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot 0 + 0 \cdot (-2) \\ 0 \cdot 1 + (-1) \cdot 0 + 0 \cdot 0 & 0 \cdot 0 + (-1) \cdot (-1) + 0 \cdot 0 & 0 \cdot 0 + (-1) \cdot 0 + 0 \cdot (-2) \\ 0 \cdot 1 + 0 \cdot 0 + (-2) \cdot 0 & 0 \cdot 0 + 0 \cdot (-1) + (-2) \cdot 0 & 0 \cdot 0 + 0 \cdot 0 + (-2) \cdot (-2) \end{pmatrix} \] \[ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \] ### Step 3: Calculate \( P^3 \) Next, we calculate \( P^3 \) by multiplying \( P^2 \) by \( P \): \[ P^3 = P^2 \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \] Calculating the product: \[ P^3 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot (-1) + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot 0 + 4 \cdot (-2) \\ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 & 0 \cdot 0 + 1 \cdot (-1) + 0 \cdot 0 & 0 \cdot 0 + 1 \cdot 0 + 0 \cdot (-2) \\ 0 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 & 0 \cdot 0 + 0 \cdot (-1) + 4 \cdot 0 & 0 \cdot 0 + 0 \cdot 0 + 4 \cdot (-2) \end{pmatrix} \] \[ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8 \end{pmatrix} \] ### Step 4: Calculate \( 2P^2 \) Now we calculate \( 2P^2 \): \[ 2P^2 = 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix} \] ### Step 5: Calculate \( P^3 + 2P^2 \) Finally, we add \( P^3 \) and \( 2P^2 \): \[ P^3 + 2P^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -8 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{pmatrix} \] \[ = \begin{pmatrix} 1 + 2 & 0 & 0 \\ 0 & -1 + 2 & 0 \\ 0 & 0 & -8 + 8 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Final Answer Thus, the matrix \( P^3 + 2P^2 \) is: \[ \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3: ONE OR MORE THAN ONE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

If A=[(1,0,0),(0,1,0),(0,0,1)] then A^(2)+2A equals

Knowledge Check

  • The matrix [(1,0,0),(0,2,0),(0,0,4)] is a

    A
    identity matrix
    B
    symmetric matrix
    C
    skew - symmetric matrix
    D
    None of these
  • If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

    A
    3I
    B
    I
    C
    `-I`
    D
    `-2I`
  • If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and AB=I_3 , then x + y equals

    A
    0
    B
    -1
    C
    2
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

    Let A = ({:(1,0,0),(0,1,1),(1,0,0):}) . Then A^(2025) - A^(2020) is equal to :

    If A=[(1,0,0),(0,1,0),(a,b,-1)], then A^2 is equal to

    If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0),(0,0,1):}] then what is the value of x?

    If [{:(1,2,3):}] [{:(1,0,0),(0,1,0),(0,0,1):}][{:(1),(2),(3):}]=A, then the order of matrix A is :