Home
Class 12
MATHS
Let Z1 and Z2 be any two non-zero comple...

Let `Z_1` and `Z_2` be any two non-zero complex number such that `3|z_1|= 4 |Z_2 |. If z =( 3z_1)/(2z_2)+(2z_2)/(3z_1)` then

A

`|z|= 1/2 sqrt(17/2)`

B

Im(z)=0

C

Re(z) =0

D

`|z|= sqrt(5/2)`

Text Solution

Verified by Experts

(*) Given `3|z_1|=4|z_2|rArr |z_1|/|z_2|=4/3 [because z_2 ne 0 rArr |z_2|ne 0 ]`
`therefore z_1/z_2=|z_1/z_2|e^(I theta) and z_2/z_1=|z_2/z_1|e^(-I theta)`
`[ because z= |z|( cos theta + I sin theta)=|z| e^(I theta)]`
`rArr z_1/z_2=4/3e^(i theta) and z_2/z_1=3/4 e^(i theta)`
`rArr 3/2 z_1/z_2=2e^(i theta) and 2/3z_2/z_1=2 e^(i theta)`
On adding these two, we get
`z=3/2 z_1/z_2+2e^(i theta)+1/2e^(i theta]`
`= 2 cos theta + 2i sin theta + 1/2 cos "" theta - 1/2 sin "" theta`
`[ because e^(pm i theta)=(cos theta pm i sin theta)]`
`=5/2 cos theta + 3/2 i sin theta`
`rArr |z|= sqrt((5/2)^2+(3/2)^2)=sqrt((34)/4)=sqrt(17)/(2)`
Note that z is nither purely imaginary and nor purely real.
'*' None of the options is correct
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 ARGUMENT OF A COMPLEX NUMBER (OBJECTIVE QUESTIONS II)(ONE OR MORE THAN ONE CORRECT OPTION)|2 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 3 ARGUMENT OF A COMPLEX NUMBER (OBJECTIVE QUESTIONS II)(MATCH THE COLUMNS )|1 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 2 CONJUGATE AND MODULUS OF A COMPLEX NUMBER (INTERGER ANSWER TYPE QUESTION )|1 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

Let z_(1) and z_(2) be any two non-zero complex numbers such that 3|z_(1)|=2|z_(2)|. "If "z=(3z_(1))/(2z_(2)) + (2z_(2))/(3z_(1)) , then

Let Z_1 and Z_2 are two non-zero complex number such that |Z_1+Z_2|=|Z_1|=|Z_2| , then Z_1/Z_2 may be :

If z_1 and z_2 are two distinct non-zero complex number such that |z_1|= |z_2| , then (z_1+ z_2)/(z_1 - z_2) is always

Let z_(1) and z_(2) be two non-zero complex number such that |z_(1)|=|z_(2)|=|(1)/(z_(1)+(1)/(z_(2)))|=2 What is the value of |z_(1)+z_(2)| ?

Let z_(1), z_(2) be two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1) - z_(2)| , then (z_(1))/(bar(z)_(1)) + (z_(2))/(bar(z)_(2)) equals

If z_(1) and z_(2) are two non-zero complex number such that |z_(1)z_(2)|=2 and arg(z_(1))-arg(z_(2))=(pi)/(2) ,then the value of 3iz_(1)z_(2)