Home
Class 12
MATHS
Let X=(\ ^(10)C1)^2+2(\ ^(10)C2)^2+3(\ ^...

Let `X=(\ ^(10)C_1)^2+2(\ ^(10)C_2)^2+3(\ ^(10)C_3)^2+\ ddot\ +10(\ ^(10)C_(10))^2` , where `\ ^(10)C_r` , `r in {1,\ 2,\ ddot,\ 10}` denote binomial coefficients. Then, the value of `1/(1430)\ X` is _________.

Text Solution

Verified by Experts

The correct Answer is:
646

We have,
`X=(""^(10)C_(1))^(2)+2(""^(10)C_(2))^(2)+3(""^(10)C_(3))^(2)+...+10(""^(10)C_(10))^(2)`
`impliesX=underset(r=1)overset(10)sumr(""^(10)C_(r))^(2)impliesX=underset(r=1)overset(10)sumr^(10)C_(r)""^(10)C_(r)`
`impliesX=underset(r=1)overset(10)sumrxx(10)/(r)""^(9)C_(r-1)""^(10)C_(r)" "[because""^(n)C_(r)=(n)/(r)""^(n-1)C_(r-1)]`
`impliesX=10underset(r=1)overset(10)sum""^(9)C_(r-1)""^(10)C_(r)`
`impliesX=10underset(r=1)overset(10)sum""^(9)C_(r-1)""^(10)C_(r)" "[because""^(n)C_(r)=""^(n)C_(n-r)]`
`impliesX=10xx""^(19)C_(9)" "[because""^(n-1)C_(r-1)""^(n)C_(n-r)=""^(2n-1)C_(n-1)]`
Now, `(1)/(1430)X=(10xx""^(19)C_(9))/(1430)=(""^(19)C_(9))/(148)=(""^(19)C_(9))/(11xx13)`
`=(19xx17xx16)/(8)=19xx34=646`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Fill in the Blanks)|1 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Analytical & Descriptive Questions )|8 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option)|10 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

Let X=(^(10)C_(1))^(2)+2(^(10)C_(2))^(2)+3(^(10)C_(3))^(2)+...+10(^(10)C_(10))^(2) where ^(10)C_(r),r in{1,2,;10} denote binomial coefficients.Then,the value of (1)/(1430)X is

"^10(C_0)^2 + "^10(C_1)^2 + "^10(C_2)^2 + ...... + ( "^10C_9)^2 + ( "^10C_10)^2=

^10(C_(0))^(2)-^(10)(C_(1))^(2)+^(10)(C_(2))^(2)-......-(^(10)C_(9))^(2)+(^(10)C_(10))^(2)=

Evaluate ""^(10)C_1 + ""^(10)C_2 + ""^(10)C_3 + ………+""^10C_10

Find the sum ^10C_(1)+^(10)C_(3)+^(10)C_(5)+^(10)C_(7)+^(10)C_(9)

Prove that ^10C_(1)(x-1)^(2)-^(10)C_(2)(x-2)^(2)+^(10)C_(3)(x-3)^(2)+...-^(10)C_(10)(x-10)^(2)=

Evaluate : 2^(10)C_(0)+(2^(2).^(10)C_(1))/(2)+(2^(3).^(10)C_(2))/(3)+ . . .+(2^(11).^(10)C_(10))/(11)

" 6.Find the value of "^(10)C_(5)+2*^(10)C_(4)+^(10)C_(3)

IIT JEE PREVIOUS YEAR-BINOMIAL THEOREM-Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Numerical Value )
  1. Let X=(\ ^(10)C1)^2+2(\ ^(10)C2)^2+3(\ ^(10)C3)^2+\ ddot\ +10(\ ^(10)C...

    Text Solution

    |