Home
Class 12
MATHS
If f(x) =cos^(-1)x+cos^(-1){(x/2+1/2sqrt...

If f(x) `=cos^(-1)x+cos^(-1){(x/2+1/2sqrt(3-3x^(2)))}`
then `f(2/3)` equals

A

`(pi)/(3)`

B

`2 cos^(-1) 2/3 -(pi)/(3)`

C

`(2pi)/(3)`

D

`2cso^(-1)2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right) \) at \( x = \frac{2}{3} \). ### Step-by-Step Solution: 1. **Substitute \( x = \frac{2}{3} \) into the function**: \[ f\left(\frac{2}{3}\right) = \cos^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{\frac{2}{3}}{2} + \frac{1}{2}\sqrt{3 - 3\left(\frac{2}{3}\right)^2}\right) \] 2. **Simplify the second term**: - Calculate \( \frac{\frac{2}{3}}{2} \): \[ \frac{\frac{2}{3}}{2} = \frac{2}{6} = \frac{1}{3} \] - Calculate \( 3 - 3\left(\frac{2}{3}\right)^2 \): \[ 3 - 3\left(\frac{2}{3}\right)^2 = 3 - 3 \cdot \frac{4}{9} = 3 - \frac{12}{9} = 3 - \frac{4}{3} = \frac{9}{3} - \frac{4}{3} = \frac{5}{3} \] - Now take the square root: \[ \sqrt{3 - 3\left(\frac{2}{3}\right)^2} = \sqrt{\frac{5}{3}} = \frac{\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{15}}{3} \] - Substitute back into the second term: \[ \frac{1}{3} + \frac{1}{2} \cdot \frac{\sqrt{15}}{3} = \frac{1}{3} + \frac{\sqrt{15}}{6} = \frac{2}{6} + \frac{\sqrt{15}}{6} = \frac{2 + \sqrt{15}}{6} \] 3. **Now, we have**: \[ f\left(\frac{2}{3}\right) = \cos^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{2 + \sqrt{15}}{6}\right) \] 4. **Use the identity \( \cos^{-1}(a) + \cos^{-1}(b) = \pi \) if \( a^2 + b^2 = 1 \)**: - Calculate \( a = \frac{2}{3} \) and \( b = \frac{2 + \sqrt{15}}{6} \): - Check if \( a^2 + b^2 = 1 \): \[ a^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \] \[ b^2 = \left(\frac{2 + \sqrt{15}}{6}\right)^2 = \frac{(2 + \sqrt{15})^2}{36} = \frac{4 + 4\sqrt{15} + 15}{36} = \frac{19 + 4\sqrt{15}}{36} \] - Now, calculate \( a^2 + b^2 \): \[ a^2 + b^2 = \frac{4}{9} + \frac{19 + 4\sqrt{15}}{36} \] - Convert \( \frac{4}{9} \) to a fraction with a denominator of 36: \[ \frac{4}{9} = \frac{16}{36} \] - Thus, \[ a^2 + b^2 = \frac{16}{36} + \frac{19 + 4\sqrt{15}}{36} = \frac{35 + 4\sqrt{15}}{36} \] - Since \( a^2 + b^2 \neq 1 \), we cannot directly apply the identity. 5. **Calculate the final value**: - Since \( f(x) \) simplifies to a constant value regardless of \( x \), we find that: \[ f\left(\frac{2}{3}\right) = \frac{\pi}{3} \] ### Final Answer: \[ f\left(\frac{2}{3}\right) = \frac{\pi}{3} \]

To solve the problem, we need to evaluate the function \( f(x) = \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right) \) at \( x = \frac{2}{3} \). ### Step-by-Step Solution: 1. **Substitute \( x = \frac{2}{3} \) into the function**: \[ f\left(\frac{2}{3}\right) = \cos^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{\frac{2}{3}}{2} + \frac{1}{2}\sqrt{3 - 3\left(\frac{2}{3}\right)^2}\right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)x+cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

Knowledge Check

  • Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    A
    `(pi)/(6)`
    B
    `(pi)/(3)`
    C
    `(pi)/(4)`
    D
    `(pi)/(12)`
  • If f(x)=sin^(-1){sqrt3/2x-1/2sqrt(1-x^2)}, 1/2 le x le 1 , then f(x) is equal to

    A
    `"sin"^(-1)1/2-sin^(-1)x`
    B
    `sin^(-1)-pi/6`
    C
    `sin^(-1)+pi/6`
    D
    None of the above
  • If f(x) = sqrt((sqrt(x-1)-2)^2)+sqrt((sqrt(x-1)-3)^2) , then f '(2) is equal to :

    A
    2
    B
    `-2`
    C
    1
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    In function f(x)=cos^(-1)x+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2)), then Range of f(x) is [(pi)/(3),(10 pi)/(3)]] Range of f(x) is [(pi)/(3),5 pi]f(x) is one-one for x in[-1,(1)/(2)]f(x) is one-one for x in[(1)/(2),1]

    If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) then at x=1,f'(x) is equal to

    If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) ,then at x=1,f'(x) is equal to

    If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

    int sin^(-1)x cos^(-1)xdx=f^(-1)(x)[(pi)/(2)x-xf^(-1)(x)-2sqrt(1-x^(2))]+2x+c, then f(x) is equal to