Home
Class 12
MATHS
If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) th...

If `sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2)` then x equal

A

`0,1/2`

B

`0,1/2`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Substitute \( \sin^{-1}(x) \) Let \( \sin^{-1}(x) = \theta \). Then, we have: \[ x = \sin(\theta) \] Substituting this into the equation gives: \[ \sin^{-1}(1 - \sin(\theta)) - 2\theta = \frac{\pi}{2} \] ### Step 2: Rearranging the Equation Rearranging the equation, we get: \[ \sin^{-1}(1 - \sin(\theta)) = \frac{\pi}{2} + 2\theta \] ### Step 3: Apply Sine to Both Sides Taking the sine of both sides, we have: \[ 1 - \sin(\theta) = \sin\left(\frac{\pi}{2} + 2\theta\right) \] Using the identity \( \sin\left(\frac{\pi}{2} + x\right) = \cos(x) \), we can rewrite this as: \[ 1 - \sin(\theta) = \cos(2\theta) \] ### Step 4: Use the Cosine Double Angle Formula Using the double angle formula for cosine, we know: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Substituting this into our equation gives: \[ 1 - \sin(\theta) = 1 - 2\sin^2(\theta) \] ### Step 5: Simplify the Equation Cancelling \(1\) from both sides: \[ -\sin(\theta) = -2\sin^2(\theta) \] Multiplying through by \(-1\): \[ \sin(\theta) = 2\sin^2(\theta) \] ### Step 6: Rearranging the Equation Rearranging gives: \[ 2\sin^2(\theta) - \sin(\theta) = 0 \] ### Step 7: Factor the Equation Factoring out \(\sin(\theta)\): \[ \sin(\theta)(2\sin(\theta) - 1) = 0 \] ### Step 8: Solve for \(\sin(\theta)\) Setting each factor to zero gives: 1. \( \sin(\theta) = 0 \) 2. \( 2\sin(\theta) - 1 = 0 \) which simplifies to \( \sin(\theta) = \frac{1}{2} \) ### Step 9: Find Corresponding \(x\) Values From \( \sin(\theta) = 0 \): \[ x = 0 \] From \( \sin(\theta) = \frac{1}{2} \): \[ x = \frac{1}{2} \] ### Step 10: Validate the Solutions 1. For \( x = 0 \): \[ \sin^{-1}(1-0) - 2\sin^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] This is valid. 2. For \( x = \frac{1}{2} \): \[ \sin^{-1}(1 - \frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2\left(\frac{\pi}{6}\right) = \frac{\pi}{6} - \frac{\pi}{3} = -\frac{\pi}{6} \] This is not valid. ### Conclusion The only valid solution is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2), then x is equal to (A)0,(1)/(2)(B)1,(1)/(2)(C)0(D)(1)/(2)

Knowledge Check

  • If sin^(-1) (1-x)-2 sin^(-1) x= pi//2 , then x equals

    A
    `{0,-1//2}`
    B
    `{1//2,0}`
    C
    `{0}`
    D
    `{-1,0}`
  • If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2) then x = ?

    A
    `0,(1)/(2),1`
    B
    `0,(1)/(2)`
    C
    0
    D
    None of these
  • If sin^(-1)(3/x)+sin^(-1)(4/x)=pi/2 , then x is equal to

    A
    3
    B
    5
    C
    7
    D
    11
  • Similar Questions

    Explore conceptually related problems

    If sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to

    sin^(-1)(1-x) - 2sin^(-1)x = pi//2 , then x is equal to

    Number of solutions of the equation,sin^(-1)(1-x)-4sin^(-1)(x)=(pi)/(2), is equal to

    If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

    If 2 sin^(-1)x - cos^(-1)x = pi/2 , then x is equal to