Home
Class 12
MATHS
If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) th...

If `sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2)` then x equal

A

`0,1/2`

B

`0,1/2`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Substitute \( \sin^{-1}(x) \) Let \( \sin^{-1}(x) = \theta \). Then, we have: \[ x = \sin(\theta) \] Substituting this into the equation gives: \[ \sin^{-1}(1 - \sin(\theta)) - 2\theta = \frac{\pi}{2} \] ### Step 2: Rearranging the Equation Rearranging the equation, we get: \[ \sin^{-1}(1 - \sin(\theta)) = \frac{\pi}{2} + 2\theta \] ### Step 3: Apply Sine to Both Sides Taking the sine of both sides, we have: \[ 1 - \sin(\theta) = \sin\left(\frac{\pi}{2} + 2\theta\right) \] Using the identity \( \sin\left(\frac{\pi}{2} + x\right) = \cos(x) \), we can rewrite this as: \[ 1 - \sin(\theta) = \cos(2\theta) \] ### Step 4: Use the Cosine Double Angle Formula Using the double angle formula for cosine, we know: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Substituting this into our equation gives: \[ 1 - \sin(\theta) = 1 - 2\sin^2(\theta) \] ### Step 5: Simplify the Equation Cancelling \(1\) from both sides: \[ -\sin(\theta) = -2\sin^2(\theta) \] Multiplying through by \(-1\): \[ \sin(\theta) = 2\sin^2(\theta) \] ### Step 6: Rearranging the Equation Rearranging gives: \[ 2\sin^2(\theta) - \sin(\theta) = 0 \] ### Step 7: Factor the Equation Factoring out \(\sin(\theta)\): \[ \sin(\theta)(2\sin(\theta) - 1) = 0 \] ### Step 8: Solve for \(\sin(\theta)\) Setting each factor to zero gives: 1. \( \sin(\theta) = 0 \) 2. \( 2\sin(\theta) - 1 = 0 \) which simplifies to \( \sin(\theta) = \frac{1}{2} \) ### Step 9: Find Corresponding \(x\) Values From \( \sin(\theta) = 0 \): \[ x = 0 \] From \( \sin(\theta) = \frac{1}{2} \): \[ x = \frac{1}{2} \] ### Step 10: Validate the Solutions 1. For \( x = 0 \): \[ \sin^{-1}(1-0) - 2\sin^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] This is valid. 2. For \( x = \frac{1}{2} \): \[ \sin^{-1}(1 - \frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2\left(\frac{\pi}{6}\right) = \frac{\pi}{6} - \frac{\pi}{3} = -\frac{\pi}{6} \] This is not valid. ### Conclusion The only valid solution is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2), then x is equal to (A)0,(1)/(2)(B)1,(1)/(2)(C)0(D)(1)/(2)

If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2) then x = ?

Number of solutions of the equation,sin^(-1)(1-x)-4sin^(-1)(x)=(pi)/(2), is equal to

If 2 sin^(-1)x - cos^(-1)x = pi/2 , then x is equal to

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

    Text Solution

    |

  2. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  3. If tan theta + tan((pi)/(3)+theta) + tan((-pi)/(3)+theta) = ktan 3 the...

    Text Solution

    |

  4. If 1/2 le x le 1 then sin^(-1) (3x-4x^(3)) equals

    Text Solution

    |

  5. The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  6. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  7. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  8. If A=2tan^(-1)(2sqrt(2)-1)a n dB=3sin^(-1)(1/3)+sin^(-1)(3/5), then wh...

    Text Solution

    |

  9. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  10. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  11. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  12. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  13. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  14. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{tan...

    Text Solution

    |

  15. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  16. Which of the following angles is greater? theta1=sin^(-1)(4/5)+sin^(-...

    Text Solution

    |

  17. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  18. Solve tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1)"\ "8/(31)

    Text Solution

    |

  19. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  20. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |