Home
Class 12
MATHS
Let f(x)={(x^2,x in Z),((k(x^2-4))/(2-x)...

Let` f(x)={(x^2,x in Z),((k(x^2-4))/(2-x),x notinZ):}` Then, `lim_(xrarr2) f(x)`

A

exists only when `k=1`

B

exists for every real k

C

exists for every real k expect `k=1`

D

does not exists

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} f(x) \) where \[ f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Z} \\ \frac{k(x^2 - 4)}{2 - x} & \text{if } x \notin \mathbb{Z} \end{cases} \] we will focus on the case when \( x \notin \mathbb{Z} \) since we are interested in the limit as \( x \) approaches 2, which is not an integer. ### Step 1: Substitute \( x = 2 \) into the function for \( x \notin \mathbb{Z} \) We need to evaluate the limit of \( \frac{k(x^2 - 4)}{2 - x} \) as \( x \) approaches 2. ### Step 2: Factor the numerator The expression \( x^2 - 4 \) can be factored as: \[ x^2 - 4 = (x - 2)(x + 2) \] Thus, we can rewrite the function: \[ f(x) = \frac{k((x - 2)(x + 2))}{2 - x} \] ### Step 3: Rewrite the denominator Notice that \( 2 - x = -(x - 2) \). Therefore, we can rewrite \( f(x) \): \[ f(x) = \frac{k((x - 2)(x + 2))}{-(x - 2)} = -k(x + 2) \quad \text{for } x \notin \mathbb{Z} \text{ and } x \neq 2 \] ### Step 4: Cancel the common terms As long as \( x \neq 2 \), we can cancel \( (x - 2) \): \[ f(x) = -k(x + 2) \] ### Step 5: Take the limit as \( x \to 2 \) Now we can find the limit: \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} -k(x + 2) = -k(2 + 2) = -k \cdot 4 = -4k \] ### Step 6: Conclusion Thus, the limit is: \[ \lim_{x \to 2} f(x) = -4k \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

If f(x)=|{:(sin x,cosx,tanx),(x^3,x^2,x),(2x,1,1):}| then lim_(xrarr0)(f(x))/(x^2) is

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xrarr1)f(x).

let f(x)=(ln(x^(2)+e^(x)))/(ln(x^(4)+e^(2x))) then lim_(x rarr oo)f(x) is

Let f(x)=(sqrt(x+3))/(x+1) , then lim_(xrarr-3)f(x)