Home
Class 12
MATHS
Let f(x)=(sqrt(1+sinx)-sqrt(1-sinx))/(ta...

Let `f(x)=(sqrt(1+sinx)-sqrt(1-sinx))/(tanx) , x ne 0` Then `lim_(x to 0) f(x)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\tan x} \) as \( x \) approaches 0, we can follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the function to check if we get an indeterminate form: \[ f(0) = \frac{\sqrt{1 + \sin(0)} - \sqrt{1 - \sin(0)}}{\tan(0)} = \frac{\sqrt{1 + 0} - \sqrt{1 - 0}}{0} = \frac{1 - 1}{0} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] Here, \( f(x) = \sqrt{1 + \sin x} - \sqrt{1 - \sin x} \) and \( g(x) = \tan x \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and denominator separately. **Numerator:** Using the chain rule: \[ f'(x) = \frac{1}{2\sqrt{1 + \sin x}} \cdot \cos x - \frac{1}{2\sqrt{1 - \sin x}} \cdot \cos x \] This simplifies to: \[ f'(x) = \cos x \left( \frac{1}{2\sqrt{1 + \sin x}} + \frac{1}{2\sqrt{1 - \sin x}} \right) \] **Denominator:** The derivative of \( g(x) = \tan x \) is: \[ g'(x) = \sec^2 x \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using L'Hôpital's Rule: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\cos x \left( \frac{1}{2\sqrt{1 + \sin x}} + \frac{1}{2\sqrt{1 - \sin x}} \right)}{\sec^2 x} \] ### Step 5: Simplify the Expression We can simplify this limit: \[ = \lim_{x \to 0} \frac{\cos^3 x}{2\sqrt{1 + \sin x} + 2\sqrt{1 - \sin x}} \] ### Step 6: Substitute \( x = 0 \) Again Now we substitute \( x = 0 \): \[ = \frac{1^3}{2\sqrt{1 + 0} + 2\sqrt{1 - 0}} = \frac{1}{2(1) + 2(1)} = \frac{1}{4} \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} f(x) = \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (sqrt(1+sinx)-sqrt(1-sinx))/x=

lim_(x to 0)(sinx)/(1+cosx) is equal to :

lim_(x to 0) (sinx-tanx)/(x) equal to?

Let f(x)=(1)/(1-|1-x|) . Then, what is lim_(x to 0) f(x) equal to

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

If f(x)=sqrt((x-sinx)/(x+cos^(2)x)),"then "lim_(xtooo) f(x) is

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is