Home
Class 12
MATHS
If A and B are 2-rowed square matrics su...

If A and B are 2-rowed square matrics such that
`(A+B)=[(4,-3),(1,6)] and (A-B)=[(-2,-1),(5,2)]` then AB=?

A

`[(-7,5),(1,-5)]`

B

`[(7,-5),(1,5)]`

C

`[(7,-1),(5,-5)]`

D

`[(7,-1),(-5,5)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrices A and B from the given equations and then compute the product AB. Given: 1. \( A + B = \begin{pmatrix} 4 & -3 \\ 1 & 6 \end{pmatrix} \) 2. \( A - B = \begin{pmatrix} -2 & -1 \\ 5 & 2 \end{pmatrix} \) ### Step 1: Add the two equations We can add the two equations to eliminate B: \[ (A + B) + (A - B) = \begin{pmatrix} 4 & -3 \\ 1 & 6 \end{pmatrix} + \begin{pmatrix} -2 & -1 \\ 5 & 2 \end{pmatrix} \] This simplifies to: \[ 2A = \begin{pmatrix} 4 - 2 & -3 - 1 \\ 1 + 5 & 6 + 2 \end{pmatrix} = \begin{pmatrix} 2 & -4 \\ 6 & 8 \end{pmatrix} \] ### Step 2: Solve for A Now, divide by 2 to find A: \[ A = \frac{1}{2} \begin{pmatrix} 2 & -4 \\ 6 & 8 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \] ### Step 3: Substitute A back to find B Now, we can substitute A back into one of the original equations to find B. We'll use the first equation: \[ A + B = \begin{pmatrix} 4 & -3 \\ 1 & 6 \end{pmatrix} \] Substituting A: \[ \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} + B = \begin{pmatrix} 4 & -3 \\ 1 & 6 \end{pmatrix} \] Now, solve for B: \[ B = \begin{pmatrix} 4 & -3 \\ 1 & 6 \end{pmatrix} - \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 4 - 1 & -3 + 2 \\ 1 - 3 & 6 - 4 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix} \] ### Step 4: Calculate the product AB Now that we have both matrices A and B, we can calculate the product AB: \[ AB = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix} \] Calculating the product: - First row, first column: \( 1 \cdot 3 + (-2) \cdot (-2) = 3 + 4 = 7 \) - First row, second column: \( 1 \cdot (-1) + (-2) \cdot 2 = -1 - 4 = -5 \) - Second row, first column: \( 3 \cdot 3 + 4 \cdot (-2) = 9 - 8 = 1 \) - Second row, second column: \( 3 \cdot (-1) + 4 \cdot 2 = -3 + 8 = 5 \) Thus, \[ AB = \begin{pmatrix} 7 & -5 \\ 1 & 5 \end{pmatrix} \] ### Final Answer The product \( AB \) is: \[ \begin{pmatrix} 7 & -5 \\ 1 & 5 \end{pmatrix} \]

To solve the problem, we need to find the matrices A and B from the given equations and then compute the product AB. Given: 1. \( A + B = \begin{pmatrix} 4 & -3 \\ 1 & 6 \end{pmatrix} \) 2. \( A - B = \begin{pmatrix} -2 & -1 \\ 5 & 2 \end{pmatrix} \) ### Step 1: Add the two equations We can add the two equations to eliminate B: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

If A and B are two matrices such that A + B = [{:(3, 8),(11, 6):}] " and " A-B = [{:(5, 2),(-3, -6):}] , then find the matrices A and B.

If A and B are two square matrices such that B=-A^(-1)BA , then (A+B)^(2) is equal to

Knowledge Check

  • If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(2) is eual to-

    A
    0
    B
    `A^(2)+B^(2)`
    C
    `A^(2)+2AB+B^(2)`
    D
    `A+B`
  • If A and B are two square matrices such that AB=A and BA=B , then A^(2) equals

    A
    B
    B
    A
    C
    `I`
    D
    O
  • Similar Questions

    Explore conceptually related problems

    If A and B are square matrices of order 2, then (A+B)^(2)=

    If A and B are square matrices of the same order such that A^(2)=A,B^(2)=B" and "(A+B)^(2)=A+B," then :"AB=

    If A and B are square matrices of the same order such that B=-A^(-1)BA, then (A+B)^(2)

    If A and B are square matrices of order 3 such that det(A)=-2 and det(B)=4, then : det(2AB)=

    If A and B are two square matrices such that AB=BA then (A-B)^(2) =A^(2) - 2AB + B^(2) . True or False.

    If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to