Home
Class 12
MATHS
int(sinx)/((1+sinx))dx=?...

`int(sinx)/((1+sinx))dx=?`

A

`tanx+secx+C`

B

`tanx-secx+C`

C

`(1)/(2)"tan"(x)/(2)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by multiplying and dividing the integrand by \( 1 - \sin x \): \[ \int \frac{\sin x}{1 + \sin x} \, dx = \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx \] This simplifies to: \[ \int \frac{\sin x (1 - \sin x)}{\cos^2 x} \, dx \] because \( (1 + \sin x)(1 - \sin x) = 1 - \sin^2 x = \cos^2 x \). ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \frac{\sin x}{\cos^2 x} \, dx - \int \frac{\sin^2 x}{\cos^2 x} \, dx \] This can be rewritten as: \[ \int \tan x \sec^2 x \, dx - \int \tan^2 x \, dx \] ### Step 3: Integrate the first term The integral \( \int \tan x \sec^2 x \, dx \) can be solved using the substitution \( u = \tan x \), which gives us: \[ \int \tan x \sec^2 x \, dx = \frac{1}{2} \tan^2 x + C_1 \] ### Step 4: Integrate the second term For the integral \( \int \tan^2 x \, dx \), we can use the identity \( \tan^2 x = \sec^2 x - 1 \): \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] This results in: \[ \tan x - x + C_2 \] ### Step 5: Combine the results Now we combine the results from both integrals: \[ \int \frac{\sin x}{1 + \sin x} \, dx = \frac{1}{2} \tan^2 x - (\tan x - x) + C \] Simplifying this gives: \[ \int \frac{\sin x}{1 + \sin x} \, dx = \frac{1}{2} \tan^2 x - \tan x + x + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin x}{1 + \sin x} \, dx = \frac{1}{2} \tan^2 x - \tan x + x + C \]

To solve the integral \( \int \frac{\sin x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by multiplying and dividing the integrand by \( 1 - \sin x \): \[ \int \frac{\sin x}{1 + \sin x} \, dx = \int \frac{\sin x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)} \, dx \] This simplifies to: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1+cosx))dx

int(tanx)/((1-sinx))dx

Knowledge Check

  • int(sinx)/((sinx-cosx))dx=?

    A
    `(1)/(2)x-(1)/(2)log|sinx-cosx|+C`
    B
    `(1)/(2)x+(1)/(2)log|sinx-cosx|+C`
    C
    `log|sinx-cosx|+C`
    D
    none of these
  • The value of int(1+sinx)/(1-sinx)dx

    A
    `2 tan ((x)/(2) + (pi)/(4)) + C`
    B
    `2 tan ((x)/(2) + (pi)/(4)) + x +C`
    C
    `2 tan ((x)/(2) + (4)/(pi)) - x + C`
    D
    `2 tan^(2) ((x)/(pi)/(4)) - X + C`
  • int(sinx)/(sinx-cosx)dx=

    A
    `(1)/(2).log(sinx-cosx)+c`
    B
    `(1)/(2).[log(sinx-cosx)+x]+c`
    C
    `(1)/(2).log(cosx-sinx)+x+c`
    D
    `(1)/(2).[log(cosx-sinx)+x]+c`
  • Similar Questions

    Explore conceptually related problems

    int(sinx)/(1+sin x) dx

    int(sinx)/(1-sin^(2)x)dx=

    int ((1+ sinx))/((1- sinx)) dx=?

    int(sinx)/(1+cos^2x)dx=

    int(x+sinx)/(1-cosx)dx=