Home
Class 12
MATHS
intcos(5+6x)dx...

`intcos(5+6x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \cos(5 + 6x) \, dx\), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Identify the substitution Let \( u = 5 + 6x \). Then, we need to find \( du \). ### Step 2: Differentiate the substitution Differentiating \( u \) with respect to \( x \): \[ du = 6 \, dx \quad \Rightarrow \quad dx = \frac{du}{6} \] ### Step 3: Substitute in the integral Now, substitute \( u \) and \( dx \) into the integral: \[ \int \cos(5 + 6x) \, dx = \int \cos(u) \cdot \frac{du}{6} \] ### Step 4: Factor out the constant We can factor out the constant \( \frac{1}{6} \): \[ = \frac{1}{6} \int \cos(u) \, du \] ### Step 5: Integrate The integral of \( \cos(u) \) is \( \sin(u) \): \[ = \frac{1}{6} \sin(u) + C \] ### Step 6: Substitute back for \( u \) Now, substitute back \( u = 5 + 6x \): \[ = \frac{1}{6} \sin(5 + 6x) + C \] ### Final Answer Thus, the final answer is: \[ \int \cos(5 + 6x) \, dx = \frac{1}{6} \sin(5 + 6x) + C \]
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions I|101 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

intcos(2x+5)dx

intcos(a-x)dx

intcos^(2) x dx

intcos x^(@)dx=

intcos^5xdx

intcos^(2)5x dx=

Evaluate intcos sqrt(x)dx

intcos^-1(1/x)dx

intcos^2(2x+1)dx

intcos^3(2x+3)dx