Home
Class 12
MATHS
int(sin^(6)x)/(cos^(8)x)dx=?...

`int(sin^(6)x)/(cos^(8)x)dx=?`

A

`(1)/(7)tan^(7)x+C`

B

`(1)/(7)sec^(7)x+C`

C

`log|cos^(6)x|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sin^6 x}{\cos^8 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{\sin^6 x}{\cos^8 x} \, dx = \int \frac{\sin^6 x}{\cos^6 x} \cdot \frac{1}{\cos^2 x} \, dx \] This can be expressed as: \[ \int \tan^6 x \cdot \sec^2 x \, dx \] ### Step 2: Use Substitution Next, we use the substitution: \[ t = \tan x \quad \Rightarrow \quad dt = \sec^2 x \, dx \] This means that \(dx = \frac{dt}{\sec^2 x}\). However, since we already have \(\sec^2 x \, dx\) in the integral, we can substitute directly: \[ \int t^6 \, dt \] ### Step 3: Integrate Now we can integrate: \[ \int t^6 \, dt = \frac{t^7}{7} + C \] ### Step 4: Substitute Back Finally, we substitute back \(t = \tan x\): \[ \frac{\tan^7 x}{7} + C \] ### Final Answer Thus, the integral \(\int \frac{\sin^6 x}{\cos^8 x} \, dx\) is: \[ \frac{\tan^7 x}{7} + C \]

To solve the integral \(\int \frac{\sin^6 x}{\cos^8 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{\sin^6 x}{\cos^8 x} \, dx = \int \frac{\sin^6 x}{\cos^6 x} \cdot \frac{1}{\cos^2 x} \, dx \] This can be expressed as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(sin^(4)x)/(cos^(8)x)dx

Evaluate: int(sin^(4)x)/(cos^(8)x)dx

Knowledge Check

  • int(sin^(2)6x-cos^(2)7x)dx=

    A
    `c-(sin12x)/(24)-(sin14x)/(28)`
    B
    `(cos6x)/(6)-(sin7x)/(7)+c`
    C
    `(cos12x)/(12)-(sin14x)/(14)`
    D
    `6sin12x+7sin14x+c`
  • The 1int(sin^(2)x)/(cos^(6)x)dx is a

    A
    is a polynomial of degree 5 in sin x
    B
    is a polynomial of degree 4 in tan x
    C
    is a polynomial of degree 5 in tan x
    D
    is a polynomial of degree 5 in cos x
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int(sin^(2)x)/(cos^(6)x)dx

    " 6.Evaluate "int(sin^(4)x)/(Cos^(6)x)dx

    Evaluate: int(sin^(6)x)/(cos x)dx

    " (8) "int(sin x)/(cos^(2)x)dx

    Find the following integrals: ( i ) int(sin x+cos x)dx( ii) int cos ecx(cos ecx+cos x)dx( iii) int(1-sin x)/(cos^(2)x)dx

    int(sin x)/(cos(x-a))dx