Home
Class 12
MATHS
Evaluate the following integrals: int(...

Evaluate the following integrals:
`int(x^(2)tan^(-1)x)/((1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx, \] we can use integration by parts and some algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We can rewrite the integral by separating \(x^2\) into \(x^2 + 1 - 1\): \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx = \int \frac{(x^2 + 1 - 1) \tan^{-1}(x)}{1+x^2} \, dx. \] This can be split into two separate integrals: \[ = \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx = \int \tan^{-1}(x) \, dx - \int \frac{\tan^{-1}(x)}{1+x^2} \, dx. \] ### Step 2: Evaluate the First Integral The first integral is straightforward: \[ \int \tan^{-1}(x) \, dx. \] Using integration by parts, let \(u = \tan^{-1}(x)\) and \(dv = dx\). Then \(du = \frac{1}{1+x^2} \, dx\) and \(v = x\). Using the integration by parts formula \(\int u \, dv = uv - \int v \, du\): \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int \frac{x}{1+x^2} \, dx. \] ### Step 3: Evaluate the Second Integral Now we need to evaluate \[ \int \frac{x}{1+x^2} \, dx. \] This can be solved using a simple substitution. Let \(w = 1 + x^2\), then \(dw = 2x \, dx\) or \(\frac{1}{2} dw = x \, dx\). Thus, \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln |1+x^2| + C. \] ### Step 4: Combine the Results Now we can combine the results from Steps 2 and 3: \[ \int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln |1+x^2| + C. \] ### Step 5: Substitute Back into the Original Integral Now substituting back into our original expression: \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx = \left( x \tan^{-1}(x) - \frac{1}{2} \ln |1+x^2| \right) - \int \frac{\tan^{-1}(x)}{1+x^2} \, dx. \] ### Step 6: Final Result Thus, the final result is: \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) - \int \frac{\tan^{-1}(x)}{1+x^2} \, dx + C. \]

To evaluate the integral \[ \int \frac{x^2 \tan^{-1}(x)}{1+x^2} \, dx, \] we can use integration by parts and some algebraic manipulation. Here’s a step-by-step solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Objective Questions Ii|56 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13B|34 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integral: int_0^1(tan^(-1)x)/(1+x^2)dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following integrals: int(tanxsec^(2)x)/((1-tan^(2)x))dx

Evaluate the following integrals: int(sin^(-1)x)/(x^(2))dx

Evaluate the following integrals: int_(1)^(2)(1)/(x(1+log x)^(2))dx

Evaluate the following integral: int_0^1tan^(-1)\ ((2x)/(1-x^2))dx

Evaluate the following integral: int_0^1tan^(-1)((2x)/(1-x^2))dx

Evaluate the following integrals: int(x)/((x+1)^(2))dx