Home
Class 12
MATHS
intxe^(x)dx=?...

`intxe^(x)dx=?`

A

`e^(x)(1-x)+C`

B

`e^(x)(x+1)+C`

C

`e^(x)(x-1)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x e^x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x \) (which means \( du = dx \)) - \( dv = e^x \, dx \) (which means \( v = e^x \)) ### Step 2: Apply the integration by parts formula Now, we can apply the integration by parts formula: \[ \int x e^x \, dx = uv - \int v \, du \] Substituting the values we have: \[ \int x e^x \, dx = x e^x - \int e^x \, dx \] ### Step 3: Solve the remaining integral The integral \( \int e^x \, dx \) is straightforward: \[ \int e^x \, dx = e^x \] ### Step 4: Substitute back into the equation Now substituting this back into our equation: \[ \int x e^x \, dx = x e^x - e^x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int x e^x \, dx = e^x (x - 1) + C \]

To solve the integral \( \int x e^x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise Exercise 13C|87 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: intxe^(2x)dx

Evaluate: intxe^(x^2)dx

Knowledge Check

  • intxe^(2x)dx=?

    A
    `(1)/(2)xe^(2x)+(1)/(4)e^(2x)+C`
    B
    `(1)/(2)xe^(2x)-(1)/(4)e^(2x)+C`
    C
    `2xe^(2x)+4e^(2x)+C`
    D
    none of these
  • intx^(x)dx+intx^(x)logxdx=

    A
    `log(x^(x))+c`
    B
    `e^(x^(x))+c`
    C
    `(x x x …" n times")+c`
    D
    `x^(x)+c`
  • If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

    A
    `(3x-1)//4`
    B
    `(2x+1)//2`
    C
    `(2x-1)//4`
    D
    `(x-4)//6`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: intx/e^(x^2)dx

    Evaluate : intxe^(x^2)dx .

    intx^3e^(x^2)dx

    Evaluate the following integrals: intx^(2)e^(x)dx

    intx/(2x+1)dx