Home
Class 12
MATHS
If [(1,4),(2,0)]=[(x,y^(2)),(z,0)] y lt ...

If `[(1,4),(2,0)]`=`[(x,y^(2)),(z,0)]` `y lt 0` then x-y+z is equal to

A

5

B

2

C

1

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( x - y + z \) given the matrices: \[ \begin{pmatrix} 1 & 4 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} x & y^2 \\ z & 0 \end{pmatrix} \] ### Step 1: Equate the corresponding elements of the matrices From the equality of the matrices, we can equate the corresponding elements: - \( a_{11} = b_{11} \) gives us \( 1 = x \) - \( a_{12} = b_{12} \) gives us \( 4 = y^2 \) - \( a_{21} = b_{21} \) gives us \( 2 = z \) - \( a_{22} = b_{22} \) gives us \( 0 = 0 \) (which is trivially true) ### Step 2: Solve for \( x \), \( y \), and \( z \) From the equations we derived: 1. From \( 1 = x \), we find: \[ x = 1 \] 2. From \( 4 = y^2 \), we can solve for \( y \): \[ y^2 = 4 \implies y = 2 \text{ or } y = -2 \] However, we are given the condition \( y < 0 \), so we choose: \[ y = -2 \] 3. From \( 2 = z \), we find: \[ z = 2 \] ### Step 3: Substitute values into the expression \( x - y + z \) Now we substitute the values of \( x \), \( y \), and \( z \) into the expression \( x - y + z \): \[ x - y + z = 1 - (-2) + 2 \] ### Step 4: Simplify the expression Now we simplify the expression: \[ 1 + 2 + 2 = 5 \] ### Final Answer Thus, the value of \( x - y + z \) is: \[ \boxed{5} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If x, y and z are real numbers such that ( x - 3) ^(2) + ( y - 4) ^(2) + ( z - 5)^(2) = 0 then , (x + y + z) is equal to

If x,y and z are real numbers such that (x - 3) ^(2) + (y -4) ^(2) + (x - 5) ^(2) =0 then (x + y + z) is equal to

Knowledge Check

  • If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

    A
    `(1, 6, 6)`
    B
    `(1, -6, 6)`
    C
    `(1, 1, 6)`
    D
    `(6, -1, 1)`
  • If x , y and z are real numbers such that ( x - 3) ^(2) + (y - 4) ^(2) + (z - 5)^(2) = 0 then ( x + y + z) is equal to

    A
    `-12`
    B
    0
    C
    8
    D
    12
  • If [{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}] , then [{:(x),(y),(z):}] is equal to

    A
    `[{:(0),(1),(1):}]`
    B
    `[{:(1),(2),(-3):}]`
    C
    `[{:(5),(-2),(1):}]`
    D
    `[{:(1),(-2),(3):}]`
  • Similar Questions

    Explore conceptually related problems

    If |(x,x^2,1+x^3),(y,y^2,1+y^2),(z,z^2,1+z^3):|=0 and x,y,z are all distinct, then xyz is equal to

    If |(x,x^2,1+x^3),(y,y^2,1+y^2),(z,z^2,1+z^3):|=0 and x,y,z are all distinct, then xyz is equal to

    If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

    If [[1,1,1],[1,-2,-2],[1,3,1]] [[x],[y],[z]]=[[0],[3],[4]] , then [[x],[y],[z]] is equal to :

    If [[1,1,1],[1,-2,-2],[1,3,1]] [[x],[y],[z]]=[[0],[3],[4]] , then [[x],[y],[z]] is equal to :