Home
Class 12
MATHS
If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),...

If `[(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)]` then matrix A equals

A

`[(7,5),(-11,-8)]`

B

`[(2,1),(5,3)]`

C

`[(7,1),(34,5)]`

D

`[(5,3),(13,8)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)]\), we need to find the matrix \(A\). ### Step 1: Identify the matrices Let: - \(B = \begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix}\) - \(C = \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix}\) - \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) (the identity matrix) ### Step 2: Rewrite the equation The equation can be rewritten as: \[ B A C = I \] ### Step 3: Multiply both sides by \(C^{-1}\) To isolate \(A\), we multiply both sides by \(C^{-1}\) from the right: \[ B A C C^{-1} = I C^{-1} \] Since \(C C^{-1} = I\), this simplifies to: \[ B A = C^{-1} \] ### Step 4: Multiply both sides by \(B^{-1}\) Now, we multiply both sides by \(B^{-1}\) from the left: \[ B^{-1} B A = B^{-1} C^{-1} \] This simplifies to: \[ A = B^{-1} C^{-1} \] ### Step 5: Calculate \(B^{-1}\) To find \(B^{-1}\), we first calculate the determinant of \(B\): \[ \text{det}(B) = (2)(4) - (1)(7) = 8 - 7 = 1 \] Now, the inverse of \(B\) is given by: \[ B^{-1} = \frac{1}{\text{det}(B)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \] ### Step 6: Calculate \(C^{-1}\) Next, we calculate the determinant of \(C\): \[ \text{det}(C) = (-3)(-3) - (2)(5) = 9 - 10 = -1 \] Now, the inverse of \(C\) is given by: \[ C^{-1} = \frac{1}{\text{det}(C)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = -1 \begin{pmatrix} -3 & -2 \\ -5 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \] ### Step 7: Calculate \(A\) Now we can calculate \(A\): \[ A = B^{-1} C^{-1} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \] Calculating the product: - First row, first column: \(4 \cdot 3 + (-1) \cdot 5 = 12 - 5 = 7\) - First row, second column: \(4 \cdot 2 + (-1) \cdot 3 = 8 - 3 = 5\) - Second row, first column: \(-7 \cdot 3 + 2 \cdot 5 = -21 + 10 = -11\) - Second row, second column: \(-7 \cdot 2 + 2 \cdot 3 = -14 + 6 = -8\) Thus, we have: \[ A = \begin{pmatrix} 7 & 5 \\ -11 & -8 \end{pmatrix} \] ### Final Answer The matrix \(A\) is: \[ A = \begin{pmatrix} 7 & 5 \\ -11 & -8 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

Knowledge Check

  • If [(2,1),(3,2)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then the matrix A is equal to

    A
    `[(1,1),(1,0)]`
    B
    `[(1,1),(0,1)]`
    C
    `[(1,0),(1,1)]`
    D
    `[(0,1),(1,1)]`
  • If [(2,-1),(2,0)]+2A=[(-3,5),(4,3)] the matrix A equals

    A
    `[(-5,6),(2,3)]`
    B
    `[(-5/2,3),(1,3/2)]`
    C
    `[(-5/2,6),(2,3)]`
    D
    `[(-5,8),(1,3)]`
  • if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

    A
    `-11`
    B
    `-21`
    C
    `-25`
    D
    `-15`
  • Similar Questions

    Explore conceptually related problems

    If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1,0],[0,1]] then the sum of the elements in A is

    If A=[(2, 2), (-3, 1), (4, 0)], B=[(6, 2), (1, 3), (0, 4)], find the matrix C such that A + B + C is zero matrix.

    If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}] then what is A equal to ?

    if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

    If A=[(4,2,3),(1,5,7)] and B=[(1,3,7),(0,4,1)] , then 2A+B is :