Home
Class 12
MATHS
If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),...

If `[(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)]` then matrix A equals

A

`[(7,5),(-11,-8)]`

B

`[(2,1),(5,3)]`

C

`[(7,1),(34,5)]`

D

`[(5,3),(13,8)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)]\), we need to find the matrix \(A\). ### Step 1: Identify the matrices Let: - \(B = \begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix}\) - \(C = \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix}\) - \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) (the identity matrix) ### Step 2: Rewrite the equation The equation can be rewritten as: \[ B A C = I \] ### Step 3: Multiply both sides by \(C^{-1}\) To isolate \(A\), we multiply both sides by \(C^{-1}\) from the right: \[ B A C C^{-1} = I C^{-1} \] Since \(C C^{-1} = I\), this simplifies to: \[ B A = C^{-1} \] ### Step 4: Multiply both sides by \(B^{-1}\) Now, we multiply both sides by \(B^{-1}\) from the left: \[ B^{-1} B A = B^{-1} C^{-1} \] This simplifies to: \[ A = B^{-1} C^{-1} \] ### Step 5: Calculate \(B^{-1}\) To find \(B^{-1}\), we first calculate the determinant of \(B\): \[ \text{det}(B) = (2)(4) - (1)(7) = 8 - 7 = 1 \] Now, the inverse of \(B\) is given by: \[ B^{-1} = \frac{1}{\text{det}(B)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \] ### Step 6: Calculate \(C^{-1}\) Next, we calculate the determinant of \(C\): \[ \text{det}(C) = (-3)(-3) - (2)(5) = 9 - 10 = -1 \] Now, the inverse of \(C\) is given by: \[ C^{-1} = \frac{1}{\text{det}(C)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = -1 \begin{pmatrix} -3 & -2 \\ -5 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \] ### Step 7: Calculate \(A\) Now we can calculate \(A\): \[ A = B^{-1} C^{-1} = \begin{pmatrix} 4 & -1 \\ -7 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \] Calculating the product: - First row, first column: \(4 \cdot 3 + (-1) \cdot 5 = 12 - 5 = 7\) - First row, second column: \(4 \cdot 2 + (-1) \cdot 3 = 8 - 3 = 5\) - Second row, first column: \(-7 \cdot 3 + 2 \cdot 5 = -21 + 10 = -11\) - Second row, second column: \(-7 \cdot 2 + 2 \cdot 3 = -14 + 6 = -8\) Thus, we have: \[ A = \begin{pmatrix} 7 & 5 \\ -11 & -8 \end{pmatrix} \] ### Final Answer The matrix \(A\) is: \[ A = \begin{pmatrix} 7 & 5 \\ -11 & -8 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}] then what is A equal to ?

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

If A is a 2times2 matrix such that [[2,1],[3,2]] A [[-3,2],[5,-3]]=[[1,0],[0,1]] then the sum of the elements in A is

If A=[(2, 2), (-3, 1), (4, 0)], B=[(6, 2), (1, 3), (0, 4)], find the matrix C such that A + B + C is zero matrix.

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 1 ( Single Correct Answer Type Questions ) )
  1. If A is an invertible matrix and B is an orthogonal matrix of the orde...

    Text Solution

    |

  2. Prove that the product of the matrices [[cos^2alpha, cosalphasinalpha]...

    Text Solution

    |

  3. If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

    Text Solution

    |

  4. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  5. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  6. If A and B are two skew symmetric matrices of order n then

    Text Solution

    |

  7. Which of the following statements is false :

    Text Solution

    |

  8. If A and B are symmetric matrices then A B-B A is a Symmetric Matrix ...

    Text Solution

    |

  9. Let A and B be two 3xx3 matrices such that A+B = 2 B' and 3A + 2B= I ...

    Text Solution

    |

  10. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  11. If A is skew-symmetric and B=(I-A)^(-1)(I+A), then B is

    Text Solution

    |

  12. Let a(n)=3^(n)+5^(n), nin N and let A=((a(n),a(n+1),a(n+2)),(a(n+1)...

    Text Solution

    |

  13. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  14. Suppose ABC is a triangle with sides a,b ,c and semiperimeter s. Then ...

    Text Solution

    |

  15. The number of matrices A = [(a,b),(c,d)] ( where a,b,c,din R ) such...

    Text Solution

    |

  16. Let A be a 3xx3 matrix with entries from the set of numbers, If the sy...

    Text Solution

    |

  17. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  18. Let A=[(a,b),(c,d)]be a 2 xx 2 matrix, where a, b, c, d take value 0 t...

    Text Solution

    |

  19. Find the inverse of each of the matrices given below : Let D= "dia...

    Text Solution

    |

  20. The inverse of a symmetric matrix ( if it exists ) is

    Text Solution

    |