Home
Class 12
MATHS
If int(pi/4)^((3pi)/4) x/(1+sinx)dx=k(sq...

If `int_(pi/4)^((3pi)/4) x/(1+sinx)dx=k(sqrt(2)-1)`, then `k`= (A) `0` (B) `pi` (C) `2pi` (D) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \) and find the value of \( k \) such that \( I = k(\sqrt{2} - 1) \), we can follow these steps: ### Step 1: Define the integral Let \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \] ### Step 2: Use the property of integrals We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here, \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \). Thus, \( a + b = \pi \). Applying this property, we have: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin(\pi - x)} \, dx \] Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral as: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin x} \, dx \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \) 2. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin x} \, dx \) Adding these two equations: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left( \frac{x + (\pi - x)}{1 + \sin x} \right) \, dx = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx \] ### Step 4: Solve for \( I \) Thus, we have: \[ I = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx \] Now we can factor out \( \frac{\pi}{2} \): \[ I = \frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \sin x} \, dx \] ### Step 5: Rationalize the integrand To integrate \( \frac{1}{1 + \sin x} \), we can multiply the numerator and denominator by \( 1 - \sin x \): \[ \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} = \frac{1 - \sin x}{\cos^2 x} \] Thus, \[ \int \frac{1}{1 + \sin x} \, dx = \int \left( \sec^2 x - \tan x \sec^2 x \right) \, dx \] ### Step 6: Integrate The integral becomes: \[ \int \sec^2 x \, dx - \int \tan x \sec^2 x \, dx \] Integrating gives: \[ \tan x - \sec x \] ### Step 7: Evaluate the limits Now we evaluate: \[ \left[ \tan x - \sec x \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \] Calculating at the limits: - At \( x = \frac{3\pi}{4} \): \[ \tan\left(\frac{3\pi}{4}\right) = -1, \quad \sec\left(\frac{3\pi}{4}\right) = -\sqrt{2} \] So, \( -1 - (-\sqrt{2}) = -1 + \sqrt{2} \). - At \( x = \frac{\pi}{4} \): \[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \] So, \( 1 - \sqrt{2} \). Combining these: \[ \left[ -1 + \sqrt{2} - (1 - \sqrt{2}) \right] = -1 + \sqrt{2} - 1 + \sqrt{2} = 2\sqrt{2} - 2 \] ### Step 8: Final expression for \( I \) Thus, \[ I = \frac{\pi}{2} \cdot \frac{2(\sqrt{2} - 1)}{2} = \frac{\pi}{2}(\sqrt{2} - 1) \] ### Step 9: Find \( k \) From the equation \( I = k(\sqrt{2} - 1) \), we have: \[ \frac{\pi}{2}(\sqrt{2} - 1) = k(\sqrt{2} - 1) \] Thus, \( k = \frac{\pi}{2} \). ### Conclusion The value of \( k \) is: \[ \boxed{\frac{\pi}{2}} \]

To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \) and find the value of \( k \) such that \( I = k(\sqrt{2} - 1) \), we can follow these steps: ### Step 1: Define the integral Let \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

int_0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B) pi/2 (C) pi (D) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

Evaluate : int_((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

int_-pi^(3pi) cot^-1(cotx)dx= (A) pi^2 (B) 2pi^2 (C) 3pi^2 (D) none of these

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

If int_0^(100pi+a) |sinx|dx=k-cosalpha , where 0ltalphaltpi , then k = (A) 101 (B) 100 (C) 201 (D) none of these

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi