Home
Class 12
MATHS
If vec(a)+vec(b)+vec(c )=0 " and" |vec(a...

If `vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7`, then find the value of `vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a)`.

Text Solution

AI Generated Solution

To solve the problem step by step, we start with the given information: 1. **Given**: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] and the magnitudes: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section C|4 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section C 28 A|1 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Section B 24A|1 Videos
  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos
  • XII Boards

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|255 Videos

Similar Questions

Explore conceptually related problems

Show that vec(a), vec(b), vec(c ) are coplanar if and only if vec(a) + vec(b), vec(b) + vec(c ), vec( c) + vec(a) are coplanar

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

Knowledge Check

  • If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

    A
    0
    B
    1
    C
    38
    D
    `-19`
  • If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

    A
    1
    B
    `(3)/(2)`
    C
    `- (3)/(2)`
    D
    none of these
  • If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b)| =3 and | vec( c)| =4 , then the angle between vec(b) and vec(c ) is

    A
    `90^(@)`
    B
    `60^(@)`
    C
    `45^(@)`
    D
    `30^(@)`
  • Similar Questions

    Explore conceptually related problems

    vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

    If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

    If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

    If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

    Given three vectors vec a , vec b ,a n d vec c two of which are non-collinear. Further if ( vec a+ vec b) is collinear with vec c ,( vec b+ vec c) is collinear with vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot Find the value of vec a. vec b+ vec b. vec c+ vec c. vec a a. 3 b. -3 c. 0 d. cannot be evaluated